国际计划委员会,由 Rod Hill 担任主席,对于会议的顺利进行,我们感谢 Kathleen Kilmer 及其 NIST 会议办公室的工作人员,特别是 Tammie Grice 和 Lori Phillips。如果没有 Ray Young 和
• 2013 年太阳和空间物理学十年调查 • APL 深度参与的即将到来的十年调查 • 社区对多视角同时观测的兴趣 • 对空间天气预报和警报系统的兴趣
为了参与这一讨论,我们探讨了巴拉德的代理实在论与量子退相干和量子达尔文主义的关系(Schlosshauer,2019;Zurek,1994、2003、2009、2018、2022)。我们认为,这些对量子物理的解读本身也在不断发展,它们将新唯物主义的焦点从量子力学转移到物质本体论和社会规模的涌现上。我们并不是反对新唯物主义;我们支持它作为一项政治和智力项目,推动它跨学科地与世界接触,并超越社会建构主义等其他社会理论体系的局限。相反,我们建议批判性地考虑巴拉德(2007)代理实在论背后的物理学,以及该领域的发展和在社会领域思考巴拉德理论的持续挑战。
• CMOS:20 μm/像素,1024 x 1024,图像尺寸随帧速率增加而减小 • 混合 CMOS(带像素存储):30 μm/像素,400 x 250,图像尺寸保持不变 q 物镜:2x、5x、10x、20x
摘要。人工智能(AI)的最终目标是模仿人的大脑,直接从高维感觉输入中执行决策和控制。衍射光网(DONS)为实现高速和低功率消耗的AI提供了有希望的解决方案。大多数报告的DON专注于不涉及环境互动的任务,例如对象识别和图像分类。相比之下,尚未开发能够决策和控制的网络。在这里,我们建议使用深度强化学习来实施模仿人类级决策和控制能力的DON。这样的网络利用残差体系结构,可以通过与环境互动来找到最佳的控制策略,并且可以轻松地与现有的光学设备实现。使用三种类型的经典游戏来验证出色的性能:TIC-TAC-TOE,SUPER MARIO BROS。和RACENing。最后,我们提出了一个基于空间光调制器网络播放TIC-TAC-TOE的实验证明。我们的工作代表着前进的D型迈出的坚实一步,这有望从简单识别或分类任务转变为AI的高级感官能力的基本转变。它可能会在自动驾驶,智能机器人和智能制造中找到令人兴奋的应用程序。
摘要。作为光学处理器,一种衍射深神经网络(D 2 NN)利用通过机器学习设计的工程衍射表面来执行全光信息处理,并以薄光学层以光的速度完成其任务。具有足够的自由度,D 2 NN可以使用空间相干的光执行任意复合物值线性变换。同样,D 2 NN还可以使用空间不连贯的照明执行任意线性强度转换。但是,在空间不连贯的光线下,这些转换是非负的,在视图的输入场上作用于衍射限量的光学强度模式。在这里,我们将空间不连贯的d 2 NN的使用扩展到复杂值的信息处理,用于使用空间不相互分的光执行任意复合物值线性转换。通过模拟,我们表明,随着优化的衍射特征的数量增加超出了由输入和输出空间带宽产品乘法所决定的阈值,因此在空间上不相互不相互的衍射视觉处理器可以近似于使用Incoherent Incoherent Illumentiner的所有复杂的复杂价值线性转换,并用于全部流动图像仿真。这些发现对于使用各种形式的基于表面的光学处理器的自然光的信息在自然光下的全光处理很重要。
定量相成像(QPI)是一种无标签的计算成像技术,用于各个领域,包括生物学和医学研究。现代QPI系统通常依靠使用迭代算法进行相位检索和图像重建的数字处理。在这里,我们报告了一个衍生光网络,该衍射光网训练,该网络训练了将随机扩散器后面的输入对象的相位信息转换为输出平面处的强度变化,从光学上执行相位恢复和对相位对象的定量成像,完全由未知的随机相位扩散器完全隐藏。此QPI衍射网络由连续的衍射层组成,轴向跨度延伸约70,其中照明波长;与现有的数字图像重建和相位检索方法不同,它形成了一个全光处理器,该处理器不需要超越照明光束的外部功率才能以光传播的速度完成其QPI重建。这个全光衍射的处理器可以通过随机的,未知的扩散器提供低功率,高框架速率和紧凑型替代方案,用于对相对的定量成像,并且可以在电磁频谱的不同部分进行生物医学成像和传感的各种应用。可以将所提供的QPI衍射设计集成到标准CCD/CMOS基于基于CMOS的图像传感器的活动区域,以将现有的光学显微镜转换为衍射QPI显微镜,在芯片上通过无线衍射层内的光衍射进行相位恢复和图像重建。
简单的光学技术。但是,EBSD 的自动化特性意味着它可以提供更多信息,而不受个人操作员的技能和主观性的影响,例如在自动图像分析的样品照明设置中。尽管 EBSD 可以自动化晶粒尺寸测量过程,但在样品制备、操作条件选择和采集后降噪的使用方面仍需谨慎。报告了这些对测量晶粒尺寸影响的实际示例,并将 EBSD 结果与光学获得的结果进行了比较,突出了 EBSD 在检测较小晶粒和检测孪晶边界方面的更高分辨率的影响。它讨论了报告结果的方式,并将结果与晶粒尺寸分布的理论预测进行了比较。这项工作是在更广泛的背景下进行的,需要量化微观结构异质性,以验证工程合金热变形的变形模型,该模型是与谢菲尔德大学和威尔士大学(斯旺西)联合项目的一部分。K P Mingard、E G Bennett、A J Ive 和 B Roebuck 2006 年 1 月
在扫描氦显微镜 (SHeM) 中演示了一种以微米级空间分辨率测量氦原子衍射的方法,并将其应用于研究氟化锂 (LiF) 晶体 (100) 平面上的微米级斑点。观察到的衍射峰的位置提供了局部晶格间距的精确测量,而紧密耦合散射计算和蒙特卡罗射线追踪模拟的组合则重现了衍射强度的主要变化。随后,通过在倒易空间中的不同点进行测量,衍射结果可用于增强图像对比度。结果为使用氦微衍射表征小尺度上精细或电子敏感材料的形态开辟了可能性。这包括许多在基础和技术上重要的样品,这些样品无法在传统的原子散射仪器中进行研究,例如小晶粒尺寸的剥离二维材料、多晶样品和其他不表现出长程有序的表面。
首先引入时,单光子计数检测器在同步基因上重塑晶体学。他们的快速读数速度启用了,例如,旋转角度的无快速数据收集和切片,并增强了新实验技术(如Ptychography)的开发。在最佳条件下,单光子计数检测器提供无限的动态范围,图像噪声仅受传入光子的泊松统计限制。从单个光子中计算脉冲,从本质上讲是使探测器如此成功的原因,也会引起主要缺点,这是由于模拟前端脉冲堆积而导致的高光子弹药效率的丧失。要充分利用衍射限制的光源,下一代单光子计数器需要以与增加的伏特量相同的数量级来提高其计数率能力。此外,由于较高的频道,需要快速帧速率(几个kHz)才能应对较短的停留时间。带有多个比较器和计数器的检测器架构可以为能量分辨成像打开新的可能性,而像素间交流可以克服收费共享和降低像素角效率损失引起的问题。将单光子计数检测器耦合到高Z传感器,以进行硬X射线检测(> 20 keV)和低增益的雪崩二极管(LGADS)以进行软X射线,以利用全部辐射光谱的新光源的增加。在本文中,我们提出了提高第四代同步源的单光子计数检测器性能的可能策略,并将它们比较它们以对集成检测器充电。