仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2024 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。AN41512_E_10/24
基于铁的形状内存合金(FE-SMAS)是电子合金材料,由于其独特的特性(包括形状记忆效应),具有广泛应用的民用结构。然而,至关重要的是要了解有效应用的有效应用fe-smas的时间依赖性行为。尤其是在个体压力下的行为,潜在的机制和转化动力学尚未受到研究。通过使用Fe-17Mn-5SI-5SI-10CR-4NI-1(V,C)Fe-Smas进行高能量X射线衍射(V,C)Fe-Smas的高能量X射线衍射(V,HEXRD),以解决这些重要的基本研究差距,原位压缩蠕变和应力松弛实验。在室温下,相对于屈服强度(ys),在不同的应力水平下研究了Fe-SMA的时间依赖性行为。实验结果表明,该材料在固定后一小时内表现出高达1.84%和56 MPa的蠕变应力,在769 MPa(1.6σYs)的测试应力下,其蠕变应力。堆叠故障概率和相量分数量化提供了基于不同应力水平的机制的理解。从HEXRD峰的特征中追溯到的转化动力学为蠕变提供了进一步的见解,具体取决于{HKL}家族的贡献。本文以评估现有模型的评估,以预测Fe-SMA的蠕变和应力放松。
和安全优势。第一个光学透视 HMD 由 Sutherland 在 20 世纪 60 年代提出 6 。从那时起,光学透视技术在军事 7-11 、工业 12,13 和消费电子应用 14-16 中不断得到探索。已经开发出各种方法来将图像从微型投影仪引导到观察者,将现实世界的视图与虚拟图像相结合 16,17 。早期的 HMD 光学组合器基于传统的轴向分束器,如谷歌眼镜 18-20 所示。然而,由于视场 (FOV) 和框架尺寸与光学元件的尺寸成正比,因此在性能和舒适度之间取得平衡会导致此类智能眼镜的 FOV 更小。为了实现更大的 FOV,使用离轴非球面镜的 HMD
cao H.B.,Chakoumakos B.C.,Andrews K.M.,Wu Y.,Riedel R.A.,Riedel R.A.,Hodges J.P.,Zhou W.,Gregory R.,Haberl B.,Haberl B.,Molaison J.J.,Lynn G.W.,需求,需求,需求,一个极端磁性中子差异的高度固定型,高纤维纤维,高纤维液,高度fllactoper 9 9
使用叠层扫描技术,样品被聚焦在微芯片上小点上的相干同步加速器 X 射线束照射,衍射光束由像素检测器在远场检测。样品逐步穿过光束,直到扫描到整个感兴趣的区域。扫描期间照亮的区域需要重叠,导致步长小于光束直径。叠层扫描技术需要过采样,因为检测器只测量强度。使用迭代算法,仍然可以检索衍射同步辐射的相位信息。根据衍射图案、光束形状以及样品与检测器之间的距离,该算法可以将收集的数据重建为高分辨率图像,无论是 2D 还是 3D。简而言之,该算法计算样品后面的波场到达探测器的路径,其中波场的振幅被像素探测器记录的强度数据替换。之后,更新波场并进行另一次迭代。当感兴趣的区域深埋在结构内部时,可能需要事先准备样品。因此,在某些情况下,必须通过聚焦离子束铣削使感兴趣的区域可用于叠层成像。
摘要。人工智能(AI)的最终目标是模仿人的大脑,直接从高维感觉输入中执行决策和控制。衍射光网(DONS)为实现高速和低功率消耗的AI提供了有希望的解决方案。大多数报告的DON专注于不涉及环境互动的任务,例如对象识别和图像分类。相比之下,尚未开发能够决策和控制的网络。在这里,我们建议使用深度强化学习来实施模仿人类级决策和控制能力的DON。这样的网络利用残差体系结构,可以通过与环境互动来找到最佳的控制策略,并且可以轻松地与现有的光学设备实现。使用三种类型的经典游戏来验证出色的性能:TIC-TAC-TOE,SUPER MARIO BROS。和RACENing。最后,我们提出了一个基于空间光调制器网络播放TIC-TAC-TOE的实验证明。我们的工作代表着前进的D型迈出的坚实一步,这有望从简单识别或分类任务转变为AI的高级感官能力的基本转变。它可能会在自动驾驶,智能机器人和智能制造中找到令人兴奋的应用程序。
摘要:GW501516,也以Cardarine的名称而闻名,是一种合成的过氧化物组增生剂活化受体三角洲(PPR-δ)激动剂,用于治疗代谢性疾病和心血管疾病。在各种溶剂和混合物中完成了广泛的多晶型筛选,以探索其生长多晶型物的能力。使用单晶X射线衍射阐明了四个多晶型物的晶体结构,而一种结构是通过粉末X射线衍射方法溶液的。通过计算方法研究了固态特征(分子间相互作用的性质)。通过热DSC分析和粉末上的X射线衍射进一步研究了多晶型物。从药物的角度来看,也分析了多晶型物的稳定性和溶解度。
摘要:在这项工作中,我们研究了偶氮Pazo(Poly [1- [4-(3-羧基-4-羟基苯基唑))苯磺胺硫胺的薄膜中记录的衍射光栅的极化特性。使用两个四分之一波板,将SLM的每个像素的相位延迟转换为线性偏振光的方位角旋转。从样品的偶氮聚合物侧记录时,使用原子力显微镜观察出明显的表面浮雕幅度。相比之下,样品的底物记录允许减少表面浮雕调制和获得极化光栅,其特性接近理想的光栅,并以两个正交圆形极化记录。我们的结果证明,即使在四像素的光栅期间也可以实现这一目标。
研究了使用两种方法合成的方解石样品的内部结晶度:溶液沉淀法和碳酸铵扩散法。扫描电子显微镜 (SEM) 分析表明,使用这两种方法沉淀的方解石产品具有明确的菱面体形状,与矿物的自形晶体习性一致。使用布拉格相干衍射成像 (BCDI) 表征这些方解石晶体的内部结构,以确定 3D 电子密度和原子位移场。使用碳酸铵扩散法合成的晶体的 BCDI 重建具有预期的自形形状,具有内部应变场和少量内部缺陷。相反,通过溶液沉淀合成的晶体具有非常复杂的外部形状和有缺陷的内部结构,呈现出零电子密度区域和明显的位移场分布。这些异质性被解释为由非经典结晶机制产生的多个结晶域,其中较小的纳米颗粒聚结成最终的自形颗粒。SEM、X 射线衍射 (XRD) 和 BCDI 的结合使用允许在结构上区分用不同方法生长的方解石晶体,为了解晶粒边界和内部缺陷如何改变方解石反应性提供了新的机会。
图 1 多焦点打印的不同光束分裂方法概览。a 宽带激光束照射衍射光学元件 (DOE) 并衍射成两个衍射级的渲染图。与波长相关的衍射角使入射光束散开。b 渲染图显示多透镜阵列 (MLA),该阵列将入射红色高斯激光束的一小部分聚焦到焦点阵列中。一半的入射激光功率被传输而不会影响焦点阵列。c 入射红色激光束照射 DOE 并在单个光束中衍射的渲染图。使用宏观透镜,每个光束被引导到由单独的微型透镜组成的 MLA 的单个透镜上。这些透镜进一步聚焦每个光束,有效地增加和创建可用于多光子多焦点 3D 打印的焦点阵列(焦点扩展函数仅有微小扩展)。
