基于蛋白质的疗法可以激活适应性免疫系统,导致中和抗体的产生以及细胞毒性 T 细胞介导的治疗细胞清除。本文表明,连续使用 CRISPR 相关蛋白 9 (Cas9) 和腺相关病毒 (AAV) 的免疫正交直系同源物可以避开适应性免疫反应,并能够通过重复给药实现有效的基因编辑。我们比较了 284 种 DNA 靶向和 84 种 RNA 靶向 CRISPR 效应物以及 167 种 AAV VP1 衣壳蛋白直系同源物与 I 类和 II 类主要组织相容性复合体蛋白的总序列相似性和预测结合强度。我们预测 79% 的 DNA 靶向 Cas 直系同源物不会产生交叉反应性免疫反应,我们在小鼠中对三种 Cas9 直系同源物进行了验证,但预计 AAV 血清型之间存在广泛的免疫交叉反应。我们还表明,在体内有效
核衣壳蛋白 QIGYYRRATRRIRGG HLA-DRB1*11:01 IGYYRRATRRRGGD HLA-DRB1*11:01 GYYRRATRRRIGGDG HLA-DRB1*11:01 TPSTWLTYTGAIKL HLA-DRB1*07:01 DQIGYYRRATRRIRG HLA-DRB1*11:01 PQIAQFAPSASAFFG HLA-DRB1*09:01 WPQIAQFAPSASAFF HLA-DRB1*09:01 QIAQFAPSASAFFGM HLA-DRB1*09:01 IAQFAPSASAFFGMS HLA-DRB1*09:01 AALALLLLDRLNQLE HLA-DRB4*01:01,HLA-DPA1 03:01/DPB1*04, HLA-DRB3*01:0, HLA-DRB1*13:02, HLA-DRB1*11:0, HLA-DRB1*04:04, HLA-DRB1*01:01, HLA-DRB1*04, HLA-DPA1*02:01/DPB1*01:01, HLA-DPA1*01:03/DPB1*02:01, HLA-DRB1*04:05, HLA-DRB1*03:01, HLA-DRB1*08:02, HLA-DRB1*15:01, HLA DQA1*01:01/DQB1*05:01 ALALLLLDRLNQLES HLA-DRB4*01:01, HLA-DPA1*03:01/DPB1*04:02, HLA-DRB3*01:01、HLA-DRB1*13:02、HLA-DRB1*11:01、HLA-DRB1*04:04、HLA-DRB1*04:01、HLA-DRB1*01:01、HLA-DRB1*03:01、HLA-DRB1*04:05、HLA-DPA1*02:01/DPB1*01:01、HLA-DPA1*01:03/DPB1*02:01、HLA-DRB1*08:02、HLA-DRB1*15:01、HLA-DQA1*01:01/DQB1*05:01 PRWYFYYLGTGPEAG HLA-DRB1*07:01 RWYFYYLGTGPEAGL HLA-DRB1*01:01尖峰糖蛋白 AAEIRASANLAATKM HLA-DQA1*05:01/DQB1*03:01 NAQALNTLVKQLSSN HLA-DRB1*11:01 EVFNATRFASVYAWN HLA-DPB1*02:01、HLA DPB1*04:02、HLA-DPB1*05:01、 HLA-DQA1*01:02、HLA-DQA1*05:01、HLA-DQB1*03:01、HLA-DQB1*06:02、HLA-DRB1*01:01、HLA-DRB1*04:04、HLA-DRB1*04:05、HLA-DRB1*07:01、 HLA-DRB1*08:02、HLA-DRB1*09:01、 HLA-DRB1*11:01, HLA-DRB1*15:01, HLA-DPA1*03:01, HLA-DPB1*01:01, HLA-DPA1*01:03, HLA-DPA1*02:01 VFRSSVLHSTQDLFL HLA-DRB1*07:01, HLA-DRB1*01:01, HLA-DRB1*09:01, HLA-DRB1*04:05, HLA-DRB1*04:01, HLA-DRB1*03:01, HLA-DQA1*01:02/DQB1*06:02, HLA-DPA1*03:01/DPB1*04:02, HLA-DRB1*13:02, HLA-DPA1*02:01/DPB1*01:01、HLA-DRB4*01:01、HLA-DQA1*05:01/DQB1*02:01、HLA-DRB1*04:04、HLA- DPA1*01:03/DPB1*02:01、HLA-DQA1*05:01/DQB1*03:01 等位基因 HLA-DRB3*01:01、HLA-DRB4*01:01、HLA-DRB5*01:01 不可用,因此未将其纳入计算。
♦ 毛细管电泳 (CE) 是一种分离技术,利用施加的电压根据离子的电泳迁移率来分离离子。♦ 在毛细管凝胶电泳中,分子通过电流通过聚合物凝胶基质分离♦ 通过凝胶的运动基于分子的大小、形状和电荷♦ 十二烷基硫酸钠 (SDS) 使大多数蛋白质变性,并根据蛋白质的大小以相等的比例结合蛋白质,从而产生均匀的电荷质量比。
人类免疫缺陷病毒1型(HIV-1)仍然是全球健康挑战,尽管抗逆转录病毒疗法的进步。衣壳抑制剂已成为有前途的药物,因为它们的独特作用机理靶向病毒capsid,该机制在病毒复制,组装和不涂层中起着关键作用。在其中,Lenacapavir(一种第一类长效的衣壳抑制剂)在临床前和临床试验中显示出很大的疗效,表明抗病毒活性延长,给药频率降低,并且安全性良好。本评论探讨了新型衣壳抑制剂的药理学,临床功效和安全性,重点是Lenacapavir解决依从性和耐药性问题的潜力。此外,本文讨论了CAPSID抑制剂研究中的实际考虑,给药策略以及未来的方向,为下一代HIV疗法提供了见解。
通过肌肉嗜性 AAV 衣壳和肌肉特异性启动子的双策略方法改进向骨骼肌的基因传递。作者:Annalucia Darbey 1、Wenanlan Jin 1、Linda Greensmith 1 James N. Sleigh 1,2*、John Counsell 3*、Pietro Fratta 1,4* 隶属关系:1 英国伦敦大学学院皇后广场神经肌肉疾病系和伦敦大学学院皇后广场运动神经元疾病中心,伦敦大学学院皇后广场神经病学研究所,伦敦 WC1N 3BG。2 英国伦敦大学学院英国痴呆症研究所,伦敦 WC1E 6BT。3 英国伦敦大学学院外科和介入科学部靶向干预研究系,查尔斯贝尔楼,伦敦,英国 4 弗朗西斯克里克研究所;伦敦,NW1 1AT,英国 * 通讯作者:Pietro Fratta ( p.fratta@ucl.ac.uk),John Counsell ( j.counsell@ucl.ac.uk) 和 James N. Sleigh ( j.sleigh@ucl.ac.uk)。摘要基于腺相关病毒 (AAV) 的病毒载体技术已展示出将基因货物运送到体内各种器官的良好能力,过去十年中,几种新型候选病毒在人体试验中显示出临床效果。然而,天然存在的 AAV 血清型在靶向骨骼肌方面的能力有限,而骨骼肌是许多神经肌肉疾病的重要基因治疗靶点。这意味着通常需要高剂量的 AAV 才能在肌肉中达到治疗有效剂量。为了克服这个问题,新型 AAV 载体衣壳已被设计成通过将靶向肽插入 AAV9 衣壳可变区 VIII (VRIII) 来实现更高的肌肉转导效率。我们在此描述了一种新报道的衣壳,称为 MyoAAV1A,与临床验证的肌肉特异性启动子相结合。我们分析了体内递送至小鼠骨骼肌的效率,发现 MyoAAV1A 衣壳与 MHCK7 启动子的最佳组合可维持骨骼肌中的转基因表达,并减少脱靶组织(尤其是肝脏)中的表达。这突出了一种有前途的衣壳-启动子组合,可在骨骼肌基因治疗的进一步临床前研究中取得进展。图形摘要
重组腺相关病毒 (AAV) 是神经科学研究中常用的基因传递载体。它们具有两个可工程化的特征:衣壳(外部蛋白质壳)和货物(封装的基因组)。可以修改这些特征以分别增强细胞类型或组织向性并控制转基因表达。已经鉴定出几种具有独特向性的工程化 AAV 衣壳,包括具有增强的中枢神经系统转导、细胞类型特异性和神经元逆向运输的变体。将这些 AAV 与现代基因调控元件和最先进的报告、传感器和效应货物配对,可以实现高度特异性的转基因表达,以对脑细胞和回路进行解剖和功能分析。在这里,我们讨论了最近的进展,这些进展提供了一个全面的(衣壳和货物)AAV 工具包,用于遗传访问分子定义的脑细胞类型。
Ø JCR 合作:通过将我们的 CRISPR- GNDM 有效载荷与可以穿透血脑屏障 (BBB) 的 AAV 衣壳相结合,继续我们在中枢神经系统疾病方面的合作。 Ø Genixcure 合作:继续我们的合作和基于 AI 的衣壳搜索,寻找用于阿尔茨海默病的 GC 衣壳。 l 知识产权更新 Ø 与东京大学共同申请的改良 Cas9 专利 (US18/058,832) 已在美国获得授权 (9 月) Ø MDL-202(GNDM-DMPK) 专利 (JP 2022-518586) 已在日本获得授权 (9 月) l 会议和演讲 Ø 过去的演讲 Ø 细胞和基因治疗峰会 (7 月 8-10 日在波士顿举行) Ø 生物加工峰会 (8 月 19-22 日在波士顿举行) Ø 基因治疗免疫原性峰会 (8 月 22 日在波士顿举行) Ø 波士顿纳米孔社区会议 (9 月 16-17 日,在波士顿举行) Ø 即将举行的演讲 Ø 第五届基因组编辑治疗峰会 (12 月 5 日在波士顿举行)
摘要:在多种生物医学应用中,类似病毒样颗粒(VLP)作为纳米镜出现,包括疫苗抗原和货物(例如mRNA)到粘膜表面的货物。这些软,胶体和蛋白质结构(衣壳)仍然容易受到粘膜环境应力因素的影响。,我们使用同质功能的聚乙烯甘油三甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基氨基酸残基交联多个衣壳表面氨基酸残基,以提高衣壳的持久性和存活率以模拟粘膜应激源。表面交联增强了从低pH值(向下pH 4.0)和高蛋白酶浓度条件(即在猪和小鼠胃液中)组装的VLP的稳定性。此外,它增加了使用原子力显微镜悬臂尖端应用的局部机械压痕下VLP的刚度。小角度X射线散射显示交联后的衣壳直径增加,并且与PEG交联的长度增加了衣壳壳的厚度。此外,表面交联对VLPS的粘液易位和积累在体外3D人类鼻上皮组织的上皮上的积累没有影响。最后,它并未损害VLPS在小鼠皮下疫苗接种模型中的疫苗功能。与没有交联的脉络化相比,相同长度的PEG分子的表面交联VLP的刚度更高,并且在胃液中表面交叉连接的VLP的寿命更长。使用大分子系tether的表面交联,但不是对这些分子的简单结合,因此提供了一种可行的手段来增强VLP对粘膜应用的弹性和存活。关键字:病毒样颗粒疫苗,粘膜递送,纳米压力,粘液相互作用,聚乙烯甘油二醇,生物医学应用V
摘要:基因治疗旨在增加,替换或关闭基因以帮助治疗疾病。迄今为止,美国食品药品监督管理局(FDA)批准了14种基因治疗产品。随着对基因治疗的兴趣日益增长,可行的基因递送向量对于将新基因插入细胞是必需的。有不同种类的基因递送载体,包括病毒载体,例如慢病毒,腺病毒,逆转录病毒,腺体相关病毒等,以及非病毒载体,例如裸体DNA,脂质矢量,脂质矢量,聚合物纳米植物,exosomes等,以及最常用的病毒素。中,最关心的载体是与腺相关的病毒(AAV),因为它具有安全性,自然能够有效地将基因传递到细胞中并持续多个组织中的转基因表达。此外,可以设计AAV基因组以生成包含感兴趣的转基因序列的重组AAV(RAAV),并已被证明是安全的基因载体。最近,RAAV载体已被批准用于治疗各种罕见疾病。尽管有这些批准,但仍存在一些主要局限性,即非特异性组织靶向和宿主免疫反应。其他问题包括中和抗体,这些抗体阻止转基因递送,有限的转基因包装能力,用于每剂量的高病毒滴度和高成本。要应对这些挑战,已经开发了几种技术。此外,总结了RAAV工程策略中遇到的主要优势和局限性。关键字:AAV工程,衣壳修改,表面束缚,病毒负载,理性设计,定向进化,机器学习基于工程方法的差异,本综述提出了三种策略:基于基因工程的衣壳修饰(衣壳修饰),通过化学共轭(表面绑扎)和其他带有AAV(病毒载荷)的配方束缚的衣壳表面束缚。