腺相关病毒(AAV)是单链的DNA病毒,其基因组被由三种不同蛋白组成的衣壳封装。aavs属于依赖性属的属,并依靠辅助病毒进行复制。由于缺乏致病性和作为基因治疗转移载体的潜力(尤其是单基因疾病),近年来,它们的意义越来越大。
摘要。从患白斑综合症的病虾斑节对虾中纯化出病原病毒。负染制剂显示病毒是多形性的。它呈梭形或杆状。在负染制剂中,病毒体最宽处为 70 至 150 纳米,长 250 至 380 纳米。在某些病毒体中,尾状突起从一端延伸。衣壳显然是由堆叠的亚基环组成。这些环与衣壳的纵轴垂直排列。病毒基因组是双链 DNA 分子,可产生至少 22 个 Hind 111 片段。DNA 的全长估计长于 150 kbp。根据病毒的形态特征和基因组结构,我们确认白斑综合征相关病毒(MJSSV)属于杆状病毒科(Baculoviridae)裸杆状病毒亚科(Nudibaculovirinae)NOB属(非封闭型杆状病毒),并将本分离株命名为PmNOBIII,并建议使用WSBV(与白斑综合征相关的杆状病毒)来指示PmNOBIII相关病原体。
药物类缩写:AI:附着抑制剂; CA:CCR5拮抗剂; CI:衣壳抑制剂; FDC:固定剂量组合; FI:融合抑制剂; Insti:集成酶抑制剂; NNRTI:非核苷逆转录酶抑制剂; NRTI:核苷逆转录酶抑制剂; PE:药代动力学增强剂; P I蛋白酶抑制剂; PAI:辅助后抑制剂;准备:暴露前预防
源自成簇的规律间隔短回文重复序列 (CRISPR)-Cas9 位点特异性核酸酶系统的生物学应用继续影响和加速基因治疗策略。在临床治疗环境中,安全有效地将 CRISPR/Cas9 系统共递送至靶体细胞至关重要。非病毒和病毒载体系统都已应用于此递送。尽管进行了出色的原理验证研究,但可用的载体技术仍然面临着限制 CRISPR/Cas9 辅助基因治疗应用的挑战。值得注意的是,强制的基因编辑组件共递送必须在可能存在预先形成的抗载体免疫的情况下完成。此外,必须寻求方法来限制脱靶编辑的可能性。为此,我们利用腺病毒 (Ad) 的分子混杂性来满足 CRISPR/Cas9 辅助基因治疗的关键要求。在这方面,我们努力对猿猴(黑猩猩)腺病毒分离株 36 (SAd36) 进行衣壳工程改造,以实现对载体趋向性的定向修饰。衣壳中整合有髓细胞结合肽 (MBP) 的 SAd36 载体允许对血管内皮进行选择性体内修饰。重要的是,血管内皮可以作为与几种遗传性疾病相关的血清因子缺乏的有效非肝细胞来源。除了允许重定向趋向性之外,非人类灵长类动物腺病毒的衣壳工程改造还提供了规避预先形成的载体免疫的方法。在此,我们生成了一个 SAd36.MBP 载体,该载体可以作为单一静脉给药剂,允许对小鼠脾脏、大脑和肾脏的内皮靶细胞进行有效和选择性的体内编辑。数据可用性:支持本研究结果的数据可根据合理要求从通讯作者处获得。
肽映射样品制备:AAV8参考材料在2x10 13 Vg/ml的浓度下包含20μl的总体积。这导致消化的估计总蛋白浓度为0.12μg/μL,总蛋白质为2.4μg。将AAV样品在6 m尿素中变性,在80℃以1 mm DTT变性30分钟,然后用15 mm iodoacetamide烷基化在黑暗中的室温下在室温下30分钟。将还原和烷基化的样品冷却至室温,并用3次同等体积的缓冲液(50 mM Tris-HCl和1 mm CaCl 2 [pH 7.5])稀释,将尿素浓度降低至<2M。然后将样品降低到<2M。然后用0.4 µ µGGGRYPSIN或CHYMOTRYPESIN或CHYMOTRYPSIN或CHYMOTRYPRYRYPERSIN或CHYMOTRYPRYRYPRYRYPRYRYPRYRYSIL逐夜消化。通过将甲酸添加到最终浓度的10%中终止消化,并将样品直接注入LCMS-9050进行分析。
医疗保健提供者在评估接种疫苗后出现的急性胸痛或胸闷、心律失常、呼吸急促或其他临床症状时,应考虑心肌炎和心包炎。他们应考虑在心脏病专家会诊下做心电图 (ECG)、肌钙蛋白和超声心动图检查。排除心肌炎和心包炎的其他潜在原因也很重要,因此建议咨询传染病和/或风湿病学,以协助进行此项评估,特别是对于急性 COVID-19 感染(例如 PCR 检测)、先前的 SARS-CoV-2 感染(例如检测 SARS-CoV-2 核衣壳抗体)和其他病毒病因(例如肠道病毒 PCR 和全面呼吸道病毒病原体检测)。
体内基因治疗面临的最大挑战之一是载体介导高度选择性的基因转移到特定治疗相关细胞群中。我们在此介绍 DARPin 靶向 AAV(DART-AAV),展示针对人类和鼠 CD8 的 DARPin。将 DARPin 插入 AAV2 和 AAV6 衣壳蛋白 1(VP1)的 GH2/GH3 环中,可实现对 CD8 阳性 T 细胞的高选择性,同时基因传递活性不受影响。值得注意的是,衣壳核心结构未发生改变,突出的 DARPin 可检测到。在复杂的原代细胞混合物中,包括供体血液或小鼠全身注射,CD8 靶向 AAV 在选择性、靶细胞活力和基因转移率方面远远优于未改造的 AAV2 和 AAV6。在体内,将单个载体注射到经过条件化的人源化或免疫功能正常的小鼠中,可击中高达 80% 的活化 CD8+ T 细胞。虽然在非活化条件下基因转移率显著降低,但在将 Cre 递送到指示小鼠中时,仍然可以检测到 CD8+ T 细胞中的选择性基因组修饰。在两种小鼠模型中,CD8+ T 细胞的选择性接近绝对,但肝脏的靶向性极强。本文描述的 CD8-AAV 扩展了免疫学研究和体内基因治疗选择的策略。
# 通讯作者:Minghao Sun 博士,Capricor Therapeutics, Inc. 研究与产品开发副总裁 10865 Road to Cure, Suite 150, San Diego, CA 92121 电子邮件:msun@capricor.com 摘要 目前批准的针对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的疫苗仅集中于利用刺突蛋白来提供免疫力。 第一批疫苗是使用脂质纳米颗粒递送的刺突 mRNA 快速开发的,但需要超低储存温度,并且对刺突变异的免疫力有限。 随后,开发了基于蛋白质的疫苗,这种疫苗提供更广泛的免疫力,但需要大量时间来开发和使用佐剂来增强免疫反应。 在这里,外泌体被用于递送双价基于蛋白质的疫苗,其中使用了两种独立的病毒蛋白。外泌体经过设计,可在表面表达 SARS-CoV-2 Delta 刺突 (Stealth X-Spike,STX-S) 或更保守的核衣壳 (Stealth X-Nucleocapsid,STX-N) 蛋白。当以单一产品 (STX-S 或 STX-N) 或组合 (STX-S+N) 形式施用时,STX-S 和 STX-N 均可诱导强效免疫,产生强大的体液和细胞免疫反应。有趣的是,这些结果是在仅施用纳克蛋白质且未使用佐剂的情况下获得的。在两种独立的动物模型 (小鼠和兔子) 中,施用纳克 STX-S+N 疫苗可增加抗体产生、产生与其他刺突变体具有交叉反应的强效中和抗体以及强烈的 T 细胞反应。重要的是,没有观察到免疫反应竞争,从而允许递送带有刺突的核衣壳以提供增强的 SARS-CoV-2 免疫力。这些数据表明,StealthX TM 外泌体平台具有巨大的潜力,可以通过将 mRNA 和重组蛋白疫苗的优势结合成一种优质、快速生成的低剂量疫苗,从而产生强大、更广泛的免疫力,从而彻底改变疫苗学。关键词:外泌体、SARS-CoV-2、严重呼吸综合征冠状病毒 2、刺突、核衣壳、中和抗体、omicron、慢病毒系统、COVID、疫苗、治疗介绍
Logan Thrasher Collins,1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 William Lagor,6 Gang Bao,4 Zhi Hong Lu,2 David T. Curiel 2,* 1 圣路易斯华盛顿大学生物医学工程系;2 圣路易斯华盛顿大学放射肿瘤学系;3 圣路易斯华盛顿大学分子微生物学系;4 莱斯大学生物工程系;5 贝勒医学院分子生理学和生物物理学系;6 贝勒医学院综合生理学系,* 通讯作者。摘要:腺相关病毒 (AAV) 作为基因治疗的递送系统取得了巨大成功,但 AAV 仅有 4.7 kb 的包装容量严重限制了其应用范围。此外,通常需要高剂量的 AAV 来促进治疗效果,从而导致急性毒性问题。虽然已经开发了双重和三重 AAV 方法来缓解包装容量问题,但这些方法需要更高的剂量才能确保以足够的频率发生共感染。为了应对这些挑战,我们在此描述了一种由共价连接到多个腺相关病毒 (AAV) 衣壳的腺病毒 (Ad) 组成的新型递送系统,这是一种以较少的 AAV 总量更有效地共感染细胞的新方法。我们利用 DogTag-DogCatcher (DgT-DgC) 分子胶系统构建我们的 AdAAV,并证明这些混合病毒复合物可实现培养细胞的增强共转导。该技术最终可能会通过提供双重或三重 AAV 的替代方案来扩大 AAV 基因递送的实用性,该替代方案可以在较低剂量下使用,同时达到更高的共转导效率。简介尽管腺相关病毒 (AAV) 基因治疗已显示出巨大的前景并已导致 5 种治疗方法获得临床批准,1–3 但该载体的 DNA 包装能力较低(4.7 kb),一直阻碍着它的应用。人们付出了巨大的努力来开发双重 AAV 系统,该系统将治疗基因的两部分放在不同的衣壳中,旨在共同感染相同的细胞。4–7 类似的三重 AAV 系统也已被探索。8,9 双重和三重 AAV 系统可以通过 DNA 反式剪接、RNA 反式剪接或通过分裂内含肽的蛋白质剪接机制将其分裂的基因重新组合成完整形式。5,7 然而,双重和三重 AAV 通常需要更高的剂量才能实现有效的细胞共转导,尤其是在需要全身给药时。10 这是有道理的,因为两三个货物到达同一个细胞的可能性应该大致分别对应于单个货物到达细胞的比例的平方或立方。因此,大多数双重或三重 AAV 策略都集中于可以局部给药到目标组织的应用,例如视网膜基因治疗。5,7–9 双重和三重 AAV 的另一个缺点是,它们可能导致未接收所有货物的细胞产生部分蛋白质产物。5 由于这些部分蛋白质的翻译量通常比所需的治疗性蛋白质还要大,因此它们可能导致严重的毒性。缓解双重和三重 AAV 基因治疗相关问题的新方法将大大提高 AAV 在治疗需要递送大量转基因序列的疾病方面的适用性。为了应对这些挑战,我们在此构建了一种全新的基因递送系统“AdAAV”,它由更大的(直径约 100 纳米)Ad 衣壳组成,衣壳上装饰有
活性调节的细胞骨架相关 (Arc) 蛋白对于突触可塑性和记忆形成至关重要。Arc 基因含有结构 GAG 逆转录转座子序列的残余,它产生的蛋白质可自组装成含有 Arc mRNA 的衣壳状结构。从神经元释放的 Arc 衣壳已被提议作为一种新的 mRNA 传递细胞间机制。尽管如此,仍然缺乏 Arc 在哺乳动物大脑中细胞间运输的证据。为了能够在体内追踪来自单个神经元的 Arc 分子,我们设计了一种腺相关病毒 (AAV) 介导的方法,使用 CRISPR/Cas9 同源独立靶向整合 (HITI) 将荧光报告基因标记到小鼠 Arc 蛋白的 N 端。我们表明,编码 mCherry 的序列可以成功敲入 Arc 开放阅读框的 5′ 端。虽然 Arc 起始密码子周围有 9 个 spCas9 基因编辑位点,但编辑的准确性高度依赖于序列,只有一个靶标导致框内报告基因整合。在海马中诱导长期增强 (LTP) 时,我们观察到 Arc 蛋白的增加与荧光强度和 mCherry 阳性细胞数量的增加高度相关。通过邻近连接分析 (PLA),我们证明 mCherry-Arc 融合蛋白通过与突触后棘中的跨膜蛋白 stargazin 相互作用而保留了 Arc 功能。最后,我们在靠近编辑神经元的 mCherry 阳性棘的 mCherry 阴性周围神经元中记录了 mCherry-Arc 与突触前蛋白 Bassoon 的相互作用。这是第一项为哺乳动物大脑中 Arc 的神经元间体内转移提供支持的研究。