摘要基于RNA的疗法在过去十年中迅速出现,提供了一种与常规药物有很大不同的新药物。可以对这些疗法进行编程以靶向或恢复有缺陷的基因,从而获得更多个性化的治疗方法并减少副作用。值得注意的是,RNA疗法在遗传肝病的治疗方面取得了重大进展,以小型干扰RNA治疗的遗传性透甲状腺蛋白淀粉样变性为例,这些淀粉样蛋白淀粉样蛋白使用肝脏靶向策略,例如Galnac共轭以提高疗效和安全性。基于RNA的基因编辑技术,例如基本编辑器和Prime Editor,定期散布了短暂的短篇小学重复系统,也表现出了希望最小化基因组重排和癌症风险的能力。虽然RNA疗法具有很高的精度,但仍在优化交付方法和确保长期安全性和功效方面仍然存在挑战。脂质纳米颗粒-MRNA疗法,尤其是在罕见疾病中蛋白质的替代品,已从临床前的成功中获得了支持。与病毒基因疗法相比,mRNA疗法具有更安全的特征,其基因组整合和致癌基因激活的风险降低。然而,临床试验,尤其是对于罕见疾病,面临限制,例如小样本量和短期观察期。进一步的临床前研究,包括非人类灵长类动物,对于精炼试验设计至关重要。尽管具有潜力,但RNA疗法的高成本构成了一个挑战,需要成本与私密模型来指导定价和可及性。在这里,我们讨论了基于RNA的疗法的基本方面,并展示了遗传肝脏代谢疾病中最相关的临床前和临床发展。
摘要:将序列变化与表型效应联系起来对于有效利用大型基因组数据集至关重要。在这里,我们提出了一种新的方法,将定向进化与蛋白质语言建模相结合,以表征水稻免疫受体的自然发展变体。使用高通量定向进化,我们设计了水稻免疫受体PIK-1,以结合和识别真菌蛋白AVR-PIKC和AVR-PIKF,它们通过当前特征的PIK-1等位基因避免检测。在此数据上对蛋白质语言模型进行了微调,以将序列变化与配体结合行为相关联。然后使用此建模来表征3,000个水稻基因组项目数据集中发现的PIK-1变体。两种变体因与AVR-PIKC的结合高度评分,并且体外分析证实了它们在野生型PIK-1受体上的提高配体结合。总体而言,这种机器学习方法确定了水稻中有希望的疾病抗性来源,并显示了探索其他感兴趣蛋白质的表型变化的潜在效用。
1临床免疫学实验室,炎症和过敏利维亚,医学与药学学院,哈桑二世大学,卡萨布兰卡20250,摩洛哥; drailalfatima@gmail.com(F.A。); jalilaelbakkouri@gmail.com(J.E.B。); khalid.zerouali2000@gmail.com(k.z.); profbousfin@gmail.com(A.A.B。)2细菌学,病毒学和医院卫生实验室,伊本·罗奇大学医院,卡萨布兰卡20250,摩洛哥3,摩洛哥3细菌学和病毒学实验室,医学和药学学院,哈桑二世大学,卡萨布兰卡20250,20250,20250 20250,摩洛哥5免疫学实验室,伊本·罗奇大学医院,卡萨布兰卡20250,摩洛哥6摩洛哥6人类传染病的人遗传学实验室,内克斯特分公司,国立国家基金会,国家de lasanté等人等人,de la recherchemédicale(Inserm),75015 Paris,France,France; vivien.beziat@inserm.fr(V.B.); emmanuelle.jouanguy@inserm.fr(E.J.); casanova@mail.rockefeller.edu(J.-L.C.)7人类传染病遗传学实验室,洛克菲勒分公司,洛克菲勒大学,纽约,纽约,纽约,10065,美国8霍华德·休斯医学研究所,雪佛兰Chase,MD 20815,美国 *通信:
线粒体在组织稳态,压力反应和人类疾病中的重要性,结合了它们在各种结构和功能状态之间过渡的能力,使它们成为监测细胞健康的出色细胞器。因此,需要技术在各种细胞和细胞环境中准确分析和量化线粒体组织的变化。在这里,我们提出了一种创新的计算机化方法,该方法可以通过提供三十多个功能,从而实现对线粒体形状和网络体系结构的准确,多尺度,快速和具有成本效益的分析。为了促进定量结果的解释,我们介绍了两种创新:使用Kiviat-Graphs(此处称为MiteSostels图),以表示高度符合性数据和可视化各种Mito-Cellular构型的形式,以形式的形式(称为mitosoposigils)。我们在从基础条件下培养的现场正常的人皮细胞中收集的丰富数据集上测试了我们的全自动图像分析工具,或暴露于特定应力,包括UVB辐射和农药暴露。我们证明了我们的专有软件(称为Mitotouch)在控制和压力的真皮成纤维细胞之间以及正常成纤维细胞和其他细胞类型之间敏感折磨的能力(包括癌症组织衍生的成纤维细胞和原发性角膜细胞),表明我们的自动分析分析捕获了分析差异。我们的工具具有在其他研究领域(例如基于这种新颖的算法,我们报告了一种保护性天然成分的鉴定,该保护性成分对线粒体组织产生了有害氢(H2O2)的有害影响。因此,我们构思了一种新型的湿干管道,结合细胞培养物,定量成像和符号学分析,以详尽地分析活着的粘附细胞中线粒体形态。
Chaitra Bandiwadkar 1,6, Naorem Leimarembi Devi 2,3,6, Aliasgar voiyadi 4,6, Vikas Singh 4,6, Prakash Shetty 4,6, Sridhar Epari 5,6, Harshali Tandel 1,6, Gorantla v Raghuram 1,6, Snehal Shabrish 1,6, Pratik Chandrani 2,3,6, *,Indraneel Mittra 1,6, *Chaitra Bandiwadkar 1,6, Naorem Leimarembi Devi 2,3,6, Aliasgar voiyadi 4,6, Vikas Singh 4,6, Prakash Shetty 4,6, Sridhar Epari 5,6, Harshali Tandel 1,6, Gorantla v Raghuram 1,6, Snehal Shabrish 1,6, Pratik Chandrani 2,3,6, *,Indraneel Mittra 1,6, *
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
亲本物种的变异(Rieseberg 等人,2003b;Bell 和 Travis,2005;Stelkens 等人,2009)。超亲表型在植物和动物中都很常见,迄今为止已在几种与适应度相关的性状中得到证实,包括形态学(鱼类的头骨形态学,Stelkens 等人,2009;蝴蝶的翅膀形态学,Mérot 等人,2020)、生理学(桡足类的温度耐受性,Pereira 等人,2014)、生活史(蜗牛的后代数量和大小,Facon 等人,2008)和行为性状(果蝇的交配行为,Ranganath 和 Aruna,2003;鱼类的觅食行为,Selz 和 Seehausen,2019;Feller 等人,2020)。已经提出了不同的机制来解释亲本基因组重组如何产生新性状(Rieseberg 等人,2003b;Bell 和 Travis,2005;Stelkens 等人,2009;Thompson 等人,2021)。极端杂交表型可能出现在第一代(F1)杂交中,这种现象通常
b'由于 TGF- 信号在免疫稳态中的作用,其紊乱是炎症性疾病的根本原因。许多慢性炎症性疾病都以纤维化为特征,纤维化与细胞外基质的过度沉积同时发生,导致受影响器官的正常功能丧失。TGF- 家族还通过激活成纤维细胞向肌成纤维细胞表型转变,在纤维化的启动和进展中发挥着重要作用。在肿瘤发生的早期阶段,TGF- 可能通过诱导肿瘤前细胞的细胞停滞和凋亡而充当肿瘤抑制因子。然而,在后期,当癌细胞获得致癌突变,从而脱离 TGF- 肿瘤抑制因子功能时,它会通过刺激肿瘤细胞进行上皮\xe2\x80\x93间质转化 (EMT) 而成为肿瘤促进剂,从而增加迁移和侵袭。 TGF- 在肿瘤微环境内的免疫抑制中也发挥着核心作用,最近的研究揭示了它在肿瘤免疫逃避和癌症免疫治疗反应不佳中的作用。'
请以以下方式引用本文:Francesco SALADINI、Federica Giammarino、Franco Maggiolo、Micol Ferrara、Giovanni Cenderello、Benedetto M. Celesia、Ferdinando Martellotta、Vincenzo Spagnuolo、Giulio M. Corbelli、Nicola Gianotti、Maria M. Santoro、Stefano Rusconi、Maurizio Zazzi、Antonella Castagna,来自 PRESTIGIO 登记处受试者的多药耐药 HIV-1 对多拉韦林的残留表型敏感性,国际抗菌剂杂志 (2023),doi:https://doi.org/10.1016/j.ijantimicag.2023.106737
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
