引言:量子机器学习 (QML) [1] 使用参数化量子电路 [2] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [3-8] 或生成建模 [9-13]。即使 QML 模型具有高表达能力 [14] 且在某些特定情况下表现出优于经典模型 [15,16],但在深度神经网络时代,量子计算机 [17] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [18]。人们希望可以通过量子传感器 [19] 收集量子数据,并最终直接连接到量子计算机。在本文中,我们模拟了通过在量子设备上直接构建量子数据来处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体而言,本信函讨论了使用监督学习方法计算哈密顿量 H 的基态相图。即使已经针对二元情况 [ 20 , 21 ] 探索了类似的问题,具有多个类别 [ 22 ] 并在超导平台上进行了计算 [ 23 ],所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且因为它们是通过分析或数值计算的,这些技术只能加快
多模态学习研究的核心在于有效利用多模态之间的融合表示。然而,现有的双向跨模态单向注意力只能利用从一个源到一个目标模态的模态间相互作用。在模态数量有限且交互方向固定的情况下,这确实无法释放多模态融合的全部表达能力。在本文中,提出了多路多模态变换器(MMT),通过单个块而不是多个堆叠的跨模态块同时探索每个模态的多路多模态互相关。MMT 的核心思想是多路多模态注意力,其中利用多种模态来计算多路注意张量。这自然有利于我们开发全面的多对多多模态交互路径。具体而言,多路张量由多个相互连接的模态感知核心张量组成,这些核心张量由模态内交互组成。此外,张量收缩操作用于研究不同核心张量之间的模态间依赖关系。本质上,我们基于张量的多路结构允许将 MMT 轻松扩展到与任意数量的模态相关的情况。以 MMT 为基础,进一步建立分层网络,以递归方式将低级多路多模态交互传输到高级交互。实验表明,MMT 可以实现最先进或相当的性能。
引言:量子机器学习 (QML) [1] 使用参数化量子电路 [2] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [3-8] 或生成建模 [9-13]。即使 QML 模型具有高表达能力 [14] 且在某些特定情况下表现出优于经典模型 [15,16],但在深度神经网络时代,量子计算机 [17] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [18]。人们希望可以通过量子传感器 [19] 收集量子数据,并最终直接连接到量子计算机。在本文中,我们模拟了通过在量子设备上直接构建量子数据来处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体而言,本信函讨论了使用监督学习方法计算哈密顿量 H 的基态相图。即使已经针对二元情况 [ 20 , 21 ] 探索了类似的问题,具有多个类别 [ 22 ] 并在超导平台上进行了计算 [ 23 ],所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且因为它们是通过分析或数值计算的,这些技术只能加快
已有15年了,基因疗法一直被视为遗传性视网膜疾病的希望的灯塔。许多临床前研究都集中在具有最大基因表达能力的载体周围,但是尽管基因转移有效,但在各种纤毛病中仍观察到了最小的生理改善。色素型视网膜炎28(RP28)是FAM161A中Bi-Callelic null突变的结果,Fam161a是连接纤毛(CC)结构的必不可少的蛋白质。在缺席的情况下,纤毛杂乱无章,导致外部片段崩溃和视力障碍。在人类视网膜中,FAM161A有两个同工型:带外显子4的长度,而没有它的短。为了恢复FAM161A中的CC,在纤毛混乱开始后不久,我们将AAV载体与启动子活性,剂量和人类同工型进行了比较。虽然所有矢量都改善了细胞存活,但仅使用弱FCBR1-F0.4启动子启用了两种同工型的组合,启用了CC中的精确FAM161A升级和增强的视网膜功能。我们对RP28的FAM161A基因置换的调查强调了精确治疗基因调节,适当的载体给药和两种同工型的递送的重要性。此精度对于涉及FAM161A等结构蛋白的安全基因疗法至关重要。
变分量子算法(VQA)因其错误恢复能力强和对量子资源需求高度灵活而具有优势,广泛应用于嘈杂的中尺度量子时代。由于 VQA 的性能高度依赖于参数化量子电路的结构,因此值得提出量子架构搜索(QAS)算法来自动搜索高性能电路。然而,现有的 QAS 方法非常耗时,需要电路训练来评估电路性能。本研究首创了免训练 QAS,利用两个免训练代理对量子电路进行排序,代替传统 QAS 中昂贵的电路训练。考虑到基于路径和基于表达力的代理的精度和计算开销,我们设计了一个两阶段渐进式免训练 QAS(TF-QAS)。首先,使用有向无环图 (DAG) 表示电路,并设计基于 DAG 中路径数量的零成本代理来过滤掉大量没有前途的电路。随后,使用基于表达能力的代理来精细地反映电路性能,从剩余的候选电路中识别出高性能电路。这些代理无需电路训练即可评估电路性能,与当前基于训练的 QAS 方法相比,计算成本显著降低。在三个 VQE 任务上的模拟表明,与最先进的 QAS 相比,TF-QAS 实现了采样效率的大幅提高,提高了 5 到 57 倍,同时速度也提高了 6 到 17 倍。
在欧盟和世界各地,植物生长促进微生物 (PGPM) 和其他生物制剂(如土壤改良剂、生物肥料、植物生物刺激剂、生物防治剂或生物农药)的市场正在蓬勃发展。微生物制剂在这一发展中占有重要地位。此类产品的使用通常以促进可持续农业实践为宣传目标,承诺通过提高作物生长和产量,提供替代品或替代品以减少农业对危险农用化学品的依赖。与注册的微生物植物保护产品不同,在欧盟作为土壤改良剂或植物生物刺激剂销售的 PGPM 在田间条件下无需严格证明最低功效水平。制造商只需确保这些产品不会对人类、动物或植物的健康、安全或环境造成不可接受的风险。目前尚无与 EPPO 标准(欧洲和地中海植物保护组织)相当的统一指南来测试田间试验的功效。本文试图填补这一空白。它提出了 PGPM 田间试验设计和实施指南,以及数据收集和评估类型和范围的建议。对从文献中选出的研究论文进行了评估,以分析是否以及在多大程度上已经满足了要求。大多数论文都有明确的实验设计,随后进行了适当的数据评估。常见的缺陷是测试环境和作物种类数量少、场地和农艺管理描述不足以及土壤湿度和温度数据缺失。使用建议的标准被认为可以提高测试微生物产品的表达能力。
摘要 — 量子计算是解决传统硬件上难以计算的问题的最有前途的新兴技术之一。现有的大量研究集中在使用门级变分量子算法进行机器学习任务,例如变分量子电路 (VQC)。然而,由于参数数量有限,VQC 的灵活性和表达能力有限,例如,在一个旋转门中只能训练一个参数。另一方面,我们观察到量子脉冲在量子计算堆栈中低于量子门,并提供更多控制参数。受 VQC 良好性能的启发,本文提出了变分量子脉冲 (VQP),这是一种直接训练量子脉冲以完成学习任务的新范式。所提出的方法通过在优化框架中拉动和推动脉冲幅度来操纵变分量子脉冲。与变分量子算法类似,我们训练脉冲的框架在嘈杂的中型量子 (NISQ) 计算机上保持了对噪声的鲁棒性。在二分类示例任务中,与 qiskit 脉冲模拟器(使用来自真实机器的系统模型)和 ibmq-jarkata 上的 VQC 学习相比,VQP 学习分别实现了高达 11% 和 9% 的准确率,证明了其有效性和可行性。在存在噪声的情况下,VQP 获得可靠结果的稳定性也得到了验证。索引术语 — 变分量子电路、量子计算、量子机器学习、变分量子脉冲、量子最优控制
摘要 — 药物分子的从头设计被认为是一个耗时且昂贵的过程,并且计算方法已应用于药物发现流程的每个阶段。变分自动编码器是一种计算机辅助设计方法,它基于现有的分子数据集探索化学空间。量子机器学习已成为一种非典型学习方法,由于其强大的表达能力,可能会加速一些经典学习任务。然而,近期的量子计算机受到量子比特数量有限的困扰,这阻碍了高维空间中的表示学习。我们提出了一种可扩展的量子生成自动编码器(SQ-VAE),用于同时重建和采样药物分子,以及相应的原始变体(SQ-AE)以实现更好的重建。提出了混合量子经典网络中的架构策略,例如可调量子层深度、异构学习率和修补量子电路,以学习高维数据集,例如配体靶向药物。在选择合适的架构策略后,针对 8x8 和 32x32 等不同维度报告了大量实验结果。在所有实验中,将量子生成自动编码器的性能与相应的经典自动编码器进行了比较。结果表明,归一化的低维分子可以获得量子计算优势,并且量子生成自动编码器生成的高维分子在相同的学习期内具有更好的药物特性。索引术语 — 量子机器学习、变分自动编码器、药物发现
现代制药研究使用自动化的高通量筛查技术来发现新的生物学靶点结合化合物,但是新药的开发仍然是一个漫长而昂贵的过程。计算分子对接提供了一种有效且廉价的方法来识别靶标结合化合物并估算化合物和靶标之间的结合效果。虚拟药物筛查的成功率主要由1)对接精度和2)用于筛选的化合物库的全面性。对接软件的对接精度取决于其采样化合物和靶构象的能力[1],以及其评分方法的精度[2]。已经取得了显着的进步来增强采样和评分程序[3],并利用大量的蛋白质 - 配体复杂结构来训练得分函数。许多对接方法(见图1(a),例如Glide [4],Medusadock [5],[6],Autodock Vina [7]。量子计算可以在许多领域(例如化学模拟,机器学习和优化)中具有独特的优势。Quantum gan是近期量子计算机的主要应用之一,因为它在学习数据分布方面具有强大的表达能力,即使与经典gan相比,参数少得多。ever,由于噪声量子计算机上的量子限制,量子神经网络仍处于其新生阶段。考虑到药物发现的特定任务,由于以下原因,我们探索了生成和预测模型的潜在量子优势:1)希尔伯特空间中的栅极参数探索与神经网络参数探索不同。
摘要 — 自闭症谱系障碍 (ASD) 是一种神经发育综合征,患者的社交互动、沟通技巧和情感表达能力下降。自闭症综合征可以通过脑电图 (EEG) 检测出来。本研究利用自闭症患者的脑电图来支持机器学习方案的分类研究,以获得最佳准确度。对脑电信号进行分类的最佳方法之一是线性判别分析 (LDA),这是一种对自闭症和正常脑电信号进行分类的机器学习技术。之所以选择 LDA,是因为它可以通过利用类间和类内函数来最大化类间距离并最小化散射数量。该方法与其他方法相结合:独立成分分析 (ICA) 和离散小波变换 (DWT),以提高准确度系统。ICA 可以去除脑信号以外的伪影或信号,这些伪影或信号可能会导致脑电信号中的噪声,因此分析的信号是完整的脑电信号,没有其他因素。DWT 可以帮助增加脑电信号中的噪声抑制,并通过频率和时间表示提供信号信息。脑电图数据集来自 16 名儿童(8 名自闭症儿童和 8 名正常儿童)。数据集中的信号使用 ICA 过滤伪影,通过 DWT 分解成三个级别,并使用线性判别分析 (LDA) 技术进行分类。使用混淆矩阵,结果显示最佳准确率为 99%。