摘要通过重量,电化学阻抗光谱和预触动力偏振方法评估了1 M HCl溶液中低碳钢对1 M HCl溶液中低碳钢腐蚀的抑制作用。在303至333 K的各个温度下确定抑制效率。讨论了温度和抑制剂浓度对抑制性能的结果。通过langmuir等温线近似抑制剂的吸附特性。从活化能值中评估了提取层的屏障特性及其与表面的化学相互作用。得出了热力学参数系统,以确认实验发现,并洞悉低碳钢腐蚀抑制的机理。通过气相色谱 - 质谱(GC -MS)分析评估ABL提取物的植物化学成分,该分析表明,光化学成分具有伴有杂原子的功能组,表明它具有显着的腐蚀抑制性能。使用密度函数理论计算研究了活性成分的量子化学参数。扫描电子显微镜(SEM)和能量色散X射线光谱法(EDX)用于检查腐蚀和抑制的低碳钢样品的表面形态。紫外线 - 可见(UV)光谱和提取物的傅立叶转换红外(FT -IR)光谱以支持实验抑制数据。
摘要:在这项工作中,Ti的直接照射:蓝宝石(100 fs)飞秒激光束在第三次谐波(266 nm)(266 nm),中等重复率(50 Hz和1000 Hz),用于在聚恒定(PS)薄膜上创建正常的周期性纳米结构。在一个斑点区的情况下,获得了50 Hz以及1 kHz的典型低空间频率LIPS(LSFL),并使用线扫描辐照。激光束的功能,重复速率,脉冲数(或辐照时间)和扫描速度,以导致各种周期性纳米结构的形成。发现PS的表面形态在很大的能量(1至20 µ j/pulse)下强烈取决于大量脉冲(10 3至10 7脉冲)的积累。此外,在激光辐照过程中从室温加热至97℃,修饰了纹波的形态,尤其是它们的振幅从12 nm(RT)提高到20 nm。扫描电子显微镜和原子力显微镜用于成像表面结构的形态特征。以选定的速度进行激光梁扫描,可以在聚合物膜上生成良好的纹波,并在大面积上产生均匀性。
摘要:本研究研究了烧结温度对BA1-XSRXTIO3陶瓷机械性能的影响。BA1-XSRXTIO3(x = 0.2)陶瓷通过溶胶 - 凝胶合成,并在不同的温度下烧结。我们使用适当的测试方法来描述机械品质,例如硬度,断裂韧性和弹性模量。结果表明,当烧结温度变化时,机械行为发生了很大变化。这显示了可以在高级电子和结构材料中使用的BA1-XSRXTIO3陶瓷的机械性能的重要处理条件。XRD模式表现出四方相,并且晶体尺寸随烧结温度的升高而增加。BST样品的表面形态看起来均匀且均匀,温度中等。高烧结温度,并且随着材料实现更好的谷物生长和填料的较高密度,从而降低了孔隙度。高烧结温度会由于提高致密性和孔隙率降低而提高机械强度,由于密度增加,较大,形成良好的晶粒和改善的断裂韧性,随着材料变得更致密和晶粒边界的形成更好,增强了裂纹,从而产生了更高的硬度。也发现(C/A比)随着烧结温度的升高而降低。
在这项工作中,我们阐明了这种积累的物种可以对催化剂的表面形态具有很强的影响。我们通过AP-XPS和扫描隧道显微镜(STM)分析了在二氧化碳氢化条件下累积基于碳的污染对模型银箔的影响。是从对复杂催化剂进行的研究中知道的二氧化碳氢化(例如Cu/ZnO/Al 2 O 3),即过渡金属分离地吸附氢。二氧化碳主要被吸附在ZnO/Al 2 O 3相或其与铜的接口上。14,16基于这些观察结果,我们将氧化锌纳米颗粒添加到银基质中,增加了催化剂的复杂性,并越来越接近工业中使用的双功能cactalysts的结构。目标是研究氧化物存在下碳污染的稳定性和演变。结果表明,银表面结构高度依赖于反应条件。无氧碳种类倾向于装饰和销钉银台阶,而在存在氧化锌纳米颗粒的情况下观察到的氧气含氧碳种类与台阶边缘的相互作用较少,并且不会在特定的表面位点积聚。这些结果阐明了金属与氧化物二氧化碳氢化催化剂中的相互影响。
摘要 - 在这项工作中,报告了具有实质感知性能的室温(RT; 〜27°C)操作的氧化铁 /聚苯胺(Fe₂O₃ /PANI)的柔性氨(NH₃)传感器。最初,在可生物降解的纸基板上打印了截面电极(IDE)(使用石墨烯基墨水)。此外,pani纳米纤维在印刷的IDE上进行了电纺,然后掉落了Fe 2 O 3的层。X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)研究,以确认复合形成,然后进行扫描电子显微镜(SEM)分析,以检查传感表面形态。在0.5 ppm(即500 ppb)至50 ppm的范围内检查了氨的感应性能,即使在0.5 ppm处也达到1.99%的响应。响应 /恢复时间被指出为950 s / 250 s,朝0.5 ppm的氨。此外,还研究了对包括二氧化碳(CO 2),二氧化碳(NO 2),一氧化碳(CO)和二氧化硫(SO 2)在内的干扰气体的选择性。还提出了复合材料对氨气检测的提议的感应机制。索引项 - 氨传感器;静电纺丝; Fe 2 O 3 /Pani复合材料;灵活的传感器;室温;纸基材。
皮革制造过程涉及大量废物处理,会污染环境,有些过程是不可避免的。在目前的研究中,3D 打印技术被用于减少浪费并覆盖皮革中的缺陷区域。本研究重点是使用乳液聚合技术合成丙烯酸粘合剂。分析这些粘合剂的固体含量,以更好地优化用于整理操作的粘合剂量。实验粘合剂的固体含量为 26%。进行了粒度和热重分析,以了解颗粒的大小和形状及其耐热性。这些粘合剂用于皮革整理,并研究了皮革的性能。使用扫描电子显微镜 (SEM) 研究了皮革的表面形态变化。研究了干湿摩擦牢度、涂膜附着力、耐光性和感官性能,发现与对照皮革相比更胜一筹。采用具有轻微缺陷的丙烯酸整理皮革进行 3D 打印,并使用热塑性聚氨酯 (TPU) 作为长丝进行设计。丙烯酸涂层皮革对 TPU 具有良好的附着力,可在短时间内产生大量设计。使用 3D 打印技术将新添加剂添加到皮革中,以产生量身定制的有价值的设计,而不会产生任何浪费
拓扑和超导性,两种不同的现象,为量子特性及其在量子技术,旋转型和可持续能源技术中的应用提供了独特的见解。tin(sn)在这里起关键作用作为元素,因为其两个结构相,α -sn表现出拓扑特征,β -sn显示超导性。在这里,我们使用分子束外延和缓冲层的晶格参数的分子束外延对SN薄膜中的这些相进行了精确的控制。SNFMS表现出β -SN或α -Sn相,因为缓冲层的晶格常数与6相差不同。10Å至6。48Å,跨越从燃气(例如INAS)到Insb的范围。α-和β -SNFM的晶体结构以X射线衍射为特征,并由拉曼光谱和扫描透射电子显微镜确认。原子力显微镜验证了光滑,连续的表面形态。电运转运测量进一步验证了阶段:β-SN超导性和Shubnikov -de HAAS振荡接近3.7 K的电阻下降,用于α -SN拓扑特征。密度功能理论表明,在拉伸应变下α -SN在压缩应变下是稳定的,与实验发现很好地对齐。因此,这项研究介绍了一个通过晶格工程控制SN阶段的平台,从而在量子技术及其他方面实现了创新的应用。
对具有可自定义性能的高级材料的需求不断增长,已将广泛的研究促进了有机和无机材料的整合,以实现靶向功能。本文的重点是基于两维(2D)材料膜的智能设备的开发,特别是氧化石墨烯(GO)和Ti 3 C 2 t x Mxene,由于其出色的可调性。膜制造过程中的修改,从纳米结构调整到三维形态学工程,可显着提高膜性能并扩大其潜在应用。这些基于2D材料膜的智能设备具有广泛的应用,包括智能体系结构,软电子设备和医疗设备。具体来说,具有致动功能的纳米结构修饰的平面膜为智能体系结构和软机器人技术提供了可编程响应。创新的弯曲膜增强了声学隔膜的结构适应性。具有独特的纳米结构和表面形态的皱纹膜可实现人体运动监测的高敏性压力感应,作为可伸缩的无线通信的可伸缩天线,并提高气体分离效率。这些进步强调了结构设计在充分利用2D材料膜的潜力方面的重要性,为开发下一代多功能智能设备开发了新的可能性。
Mangifera Indica(MI)或芒果叶作为铜抑制剂已被研究。在乙醇溶剂中提取Mi,并以1 M HCl溶液中不同浓度的0、0.4、0.6和0.8 mg/ml制备,以模仿腐蚀性环境。由UV-VIS分光光度计分析的预先准备的MI提取器在约370 nm处显示肩峰,这是由芳族C = C = C = C = C = C = C = C = C = C = C = O)功能的N→π*电子过渡产生的。傅立叶变换红外光谱(FTIR)发现,MI提取物表现出芳族C = C,C = O酚类化合物,C-OH和C-O拉伸振动的组。电化学阻抗光谱(EIS)和TAFEL图分析评估了以0.6 mg/mL浓度达到的最佳腐蚀抑制铜。结果由腐蚀电位的正转移,e Corr,较低的腐蚀电流,i Corr和腐蚀速率(CR)分别为-0.233 V,4.39 µA/cm 2和0.05 mm/yr。使用冶金显微镜评估腐蚀测试后铜底物的表面形态显示出由于MI提取物的分子吸附而引起的巨大腐蚀抑制。
摘要:自1980年代以来,消费者对新鲜农产品(蔬菜和水果)的需求已大大增加,以增加营养食品和更健康的生活实践,尤其是在发达国家。目前,几次食源爆发与新鲜农产品有关。与人类感染相关的新鲜农产品的全球增长可能是由于使用废水或任何被污染的水来种植水果和蔬菜,植物表面上食源性病原体的公司附着以及这些试剂的内部化以及植物组织内部的这些试剂的内在化,贫穷的二线疗法和人类的饮食习惯和人类的摄入量和人类的饮食量很差。已经建立了与人类微生物病原体(HMP)相互作用,其内在化和植物组织内/生存率有关的几项研究。先前的研究表明,HMP由几个细胞成分组成,可附着并适应植物的细胞内壁ni。此外,还有几种与植物相关的因素,例如表面形态,养分含量和植物-HMP相互作用,这些因素决定了内在化和随后向人类的传播。基于记录的发现,内部化的HMP不容易受到卫生或在新鲜农产品表面上施用的卫生剂的影响。因此,HMP对新鲜农产品的污染可能构成显着的食品安全危害。本评论提供了新鲜农产品和HMP之间相互作用的全面概述,并揭示了代理商向人类的相互作用和传播的歧义。