电荷转移的确切机制仍在研究中。旁边是电子传递,10、14、29该现象通常归因于离子电荷。2,32 - 36在水或高含量液体中,大多数固体表面都会充电。这些表面电荷自发形成,例如,通过溶液中的离子吸附,通过表面基团的质子化或去质子化或通过离子的优先溶解,从而形成静电双层(EDL)。37,38 Sosa等。 表明接触电气与液体的Zeta电位,pH和盐串联相关。 39因此,先前的模型基于这样的假设:从接触线移动时,来自EDL的某些电荷被留在实心表面上。 13最近,从理论上描述了回收接触线及其参数依赖性的这种电荷传输机制。 4037,38 Sosa等。表明接触电气与液体的Zeta电位,pH和盐串联相关。39因此,先前的模型基于这样的假设:从接触线移动时,来自EDL的某些电荷被留在实心表面上。13最近,从理论上描述了回收接触线及其参数依赖性的这种电荷传输机制。40
摘要:从历史上看,精油 (Eos) 的应用方式多种多样,现代科学证实了其抗菌、抗氧化、抗炎和神经保护特性。牛至 (Origanum vulgare) 是精油的重要来源,尤其富含百里酚、香芹酚和 β-石竹烯等化合物,这些化合物有助于其发挥强大的抗菌作用。这些作用包括破坏细菌细胞膜、干扰群体感应和抑制生物膜形成。牛至精油对抗生素耐药和非耐药菌株均有效,例如大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌。这种精油的成分会破坏膜完整性、离子转运、膜表面电荷、生物膜形成和其他生物物理参数,最终导致细胞死亡。研究强调了它在对抗抗生素耐药性方面的潜力,无论是单独使用还是与传统抗生素协同使用。此外,牛至精油有望成为一种天然治疗剂。继续研究其复杂的化学相互作用将进一步阐明其在抗菌治疗中的全部潜力。这篇综述文章介绍了牛至精油抗菌作用的可能机制及其应用前景。
缺乏安全且有效的输送平台,使用CRISPR/CAS9系统对结肠疾病的口服治疗受到了阻碍。 过表达的CD98在溃疡性结肠炎(UC)和结肠炎相关的结直肠癌(CAC)的进展中起着至关重要的作用。 在这项研究中,衍生自桑叶叶的脂质纳米颗粒(LNP)用复数共聚物功能化,并优化以提供CRISPR/CAS基因编辑机械用于CD98敲低。 所获得的LNP具有267.2 nm的流体动力直径,尺寸狭窄的分布和负表面电荷(-25.6 mV)。 将Pluronic F127置入LNP中,提高了其在胃肠道中的稳定性,并促进了它们通过结肠粘液屏障的穿透力。 半乳糖末端组通过巨噬细胞通过近似糖蛋白受体介导的内吞作用促进了LNP的内吞作用,其转染效应比Lipofectamine 6000高2.2倍。使用CRISPR/CAS9系统对结肠疾病的口服治疗受到了阻碍。过表达的CD98在溃疡性结肠炎(UC)和结肠炎相关的结直肠癌(CAC)的进展中起着至关重要的作用。在这项研究中,衍生自桑叶叶的脂质纳米颗粒(LNP)用复数共聚物功能化,并优化以提供CRISPR/CAS基因编辑机械用于CD98敲低。所获得的LNP具有267.2 nm的流体动力直径,尺寸狭窄的分布和负表面电荷(-25.6 mV)。将Pluronic F127置入LNP中,提高了其在胃肠道中的稳定性,并促进了它们通过结肠粘液屏障的穿透力。半乳糖末端组通过巨噬细胞通过近似糖蛋白受体介导的内吞作用促进了LNP的内吞作用,其转染效应比Lipofectamine 6000高2.2倍。LNPS显着降低了CD98表达,下调的促炎细胞因子(TNF-𝜶和IL-6),上调的抗渗透性因子(IL-10)以及对M2表型的偏振巨噬细胞上调。口服LNP通过减轻炎症,恢复结肠屏障并调节肠道菌群来减轻UC和CAC。 作为第一个口腔CRISPR/CAS9递送LNP,该系统是口服治疗结肠疾病的精确且有效的平台。口服LNP通过减轻炎症,恢复结肠屏障并调节肠道菌群来减轻UC和CAC。作为第一个口腔CRISPR/CAS9递送LNP,该系统是口服治疗结肠疾病的精确且有效的平台。
摘要:纳米粒子中寡核苷酸与外部结合或结合到基质中,可用于基因编辑或调节中枢神经系统中的基因表达。这些纳米载体通常针对神经元或神经胶质细胞的转染进行了优化。它们还可以促进跨脑内皮的转胞吞作用以绕过血脑屏障。本综述研究了纳米载体及其寡核苷酸货物的不同配方,以及它们进入大脑并调节基因表达或疾病的能力。纳米载体的大小对于确定从血浆中清除的速率以及内皮细胞转胞吞作用的细胞内途径至关重要。表面电荷对于确定其如何与内皮和靶细胞相互作用很重要。寡核苷酸的结构影响其稳定性和降解速率,而纳米载体的化学配方主要控制货物释放的位置和速率。由于人类和动物疾病模型在解剖学上存在很大差异,因此,要想在人类身上成功进行寡核苷酸基因治疗,需要鞘内注射。在动物模型中,在纳米载体上进行脑室内或静脉内注射寡核苷酸已经取得了一些进展。然而,要想让大量的纳米载体穿过人类的血脑屏障,可能需要靶向内皮溶质载体或囊泡运输系统。
摘要:多西他赛 (DTX) 广泛用于治疗非小细胞肺癌 (NSCLC) 患者,但存在剂量限制性副作用,尤其是神经毒性和骨髓抑制。在此,我们开发了环状 cNGQGEQc 肽导向聚合物囊体多西他赛 (cNGQ-PS-DTX),作为 NSCLC 的靶向多功能制剂。携带 8.1 wt % DTX 的 cNGQ-PS-DTX 尺寸为 93 nm,表面电荷为中性,稳定性高,并具有谷胱甘肽触发的 DTX 释放行为。细胞毒性研究表明,cNGQ-PS-DTX 在过表达 α 3 β 1 整合素的 A549 人肺癌细胞中的抗肿瘤活性明显优于游离 DTX 和非靶向 PS-DTX。cNGQ-PS-DTX 在小鼠中表现出非常高的耐受性(比游离 DTX 好 8 倍以上)和缓慢消除。重要的是,与 PS-DTX 和游离 DTX 对照相比,cNGQ-PS-DTX 表现出显著改善的肿瘤蓄积和更高的皮下和原位 A549 异种移植抑制率。α 3 β 1 整合素靶向聚合物囊泡多西紫杉醇成为治疗 NSCLC 的先进纳米治疗剂。关键词:肺癌、聚合物囊泡、多西紫杉醇、化疗、靶向递送
摘要:免疫系统通常提供防御入侵的致病微生物和任何其他颗粒物污染物的防御。尽管如此,最近有报道说,由于其独特的物理化学特征,纳米材料可以逃避免疫系统并调节免疫学反应。因此,基于纳米材料的免疫成分激活,即中性粒细胞,巨噬细胞和其他效应细胞,可能会诱发炎症并改变免疫反应。在这里,必须区分纳米材料触发的急性和慢性调节以确定人类健康的可能风险。纳米材料的大小,形状,组成,表面电荷和变形性是控制其免疫细胞摄取的因素以及由此产生的免疫反应。在纳米材料表面吸附的分子的外围电晕也会影响其免疫学作用。在这里,我们回顾了靶向免疫调节的当前纳米工程趋势,重点是纳米材料的设计,安全性和潜在毒性。首先,我们描述了触发免疫反应的工程纳米材料的特征。然后,争论了纳米工程颗粒的生物相容性和免疫毒性,因为这些因素会影响应用。最后,讨论了表面修饰,协同方法和仿生学的未来纳米材料发展。关键词:表面工程,免疫调节,生物相容性,免疫毒性,纳米医学
使用超支化聚酰胺胺作为添加剂,通过非溶剂诱导相转化制备了具有改进的防污和抗生物污染性能的聚氯乙烯 (PVC) 超滤膜。PVC 通过亲核取代反应与商用聚酰胺胺纳米材料 Helux-3316 反应到铸造溶液中。通过 ATR-FTIR 和元素组成研究了纯膜和功能化膜的组成。使用荧光染料荧光胺跟踪氨基。使用表面 ζ 电位和水接触角来测量测试膜的表面电荷和亲水性。氨基的加入增加了膜的亲水性和表面孔隙率,从而提高了渗透性。功能化膜在过滤 BSA 溶液时表现出防污性能,并且比 PVC 膜的不可逆污染更低。 Helux 部分附着在 PVC 上可产生具有抗生物污染功能的膜,这可以通过带正电荷的 Helux 部分与带负电荷的细胞膜相互作用来解释。过滤过程中附着在膜表面的细胞生长减少量达到革兰氏阳性菌金黄色葡萄球菌的 1-log。该研究表明,在铸造溶液中加入浓度为 1 wt% 的超支化纳米材料可显著提高膜的性能,包括渗透性和防污潜力。
摘要:基于聚合物的除草剂纳米载体表现出了提高除草剂功效和环境安全的潜力。这项研究旨在开发,表征和评估对草甘膦基于天然的聚合物纳米系统的靶向和非目标生物的毒性。聚合物(例如壳聚糖(CS),Zein(Zn)和木质素(LG))用于合成中。纳米系统的大小,表面电荷,多分散指数,封装效率,对杂草物种的毒性(Amaranthus hybridus,ipomoea grandifolia和eleusine indica)以及综述(RR)Ready(RR)作物,土壤呼吸和土壤呼吸和酶活性。与商业草甘膦(40%)相比,最稳定的系统是Zn与交联的poloxamer(PL)的组合,杂草控制功效较高(90-96%)。对I. Grandifolia和E. Indica没有观察到没有改善。在RR作物,土壤呼吸或土壤酶中未观察到草甘膦毒性,表明在这些模型中没有纳米成型的毒性作用。Zn- PL系统可以是使用环保材料的草甘膦递送的有希望的替代方法,并提高了农业杂草控制的效率。关键字:纳米糖剂,锌,木质素,杂草控制,可持续性
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
摘要:CRISPR-Cas9 系统是一种新兴的治疗工具,具有纠正多种遗传疾病的潜力。然而,对于基因治疗应用,需要一种有效的运载工具,能够将 CRISPR-Cas9 成分运送到目标细胞群的细胞溶胶中。在本研究中,我们优化了脂质纳米颗粒 (LNP) 的配方条件,以运送现成的 CRISPR-Cas9 核糖核酸蛋白 (RNP)。复合过程中的缓冲液组成和相对 DOTAP 浓度因 LNP 封装内部生产的 Cas9 RNP 或 Cas9 RNP 与用于基因校正的额外模板 DNA 而不同。通过不对称流场流分馏 (AF4) 对 LNP 的尺寸、表面电荷和等离子体相互作用进行了表征。在荧光报告细胞系上对粒子进行了功能筛选,以进行基因敲除和基因校正。这揭示了 RNP 与柠檬酸盐缓冲液和 PBS 的不相容性。我们证明了用于基因敲除的 LNP 不一定需要 DOTAP,而用于基因校正的 LNP 仅在低浓度的 DOTAP 下才有效。AF4 研究还表明 LNP 与血浆相互作用,但保持稳定,而 HDR 模板似乎有利于 LNP 的稳定性。在最佳配方条件下,我们在纳摩尔浓度的 CRISPR-Cas9 RNP 下分别实现了高达 80% 和 20% 的基因敲除和基因校正效率。