金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域,区域 I 和 III 的斜率较陡,区域 II 的线性斜率适中,这通常称为巴黎制度。但是,文献中有许多例子表明区域 II 的斜率存在变化。一些研究人员假设区域 I 和 III 呈线性行为,并导致整个 FCGR 曲线的多线性描述。在本文中,我们将假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下均受幂律行为控制。为了适应多线性 FCGR 曲线的变化,在 FCGR 方程中引入了数学枢轴点,允许直接拟合裂纹长度与循环曲线以获得 FCGR。能够拟合区域 I 中裂纹的细小和长裂纹扩展曲线,证实了区域 I 裂纹扩展速率受幂律行为控制。FCGR 结果表明,细小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,无论是细小裂纹还是长裂纹。这导致过渡处 ΔK 明显偏移,并指出不均匀采样是细小裂纹阈值较低的原因。将精确的小裂纹扩展速率测量与长裂纹扩展速率测量相结合,从初始不连续尺寸计算疲劳寿命,这与光滑样品实验获得的疲劳寿命结果相对应。
量化疲劳裂纹扩展对于断裂关键工程部件和结构的损伤容限评估非常重要。疲劳裂纹扩展表征历史上的第一个重大事件是使用应力强度因子范围 D K 来关联疲劳裂纹扩展速率,由 Paris 等人 1 基于三项独立研究得出。Rice 2 在连续力学框架内进一步合理化了这种方法,认为疲劳裂纹扩展速率数据可能与应力强度因子范围相关。此后,人们普遍认为,在小规模屈服 (SSY) 条件下的大多数工程应用中,使用弹性应力强度因子范围 D K 就足够了,尽管大约在同一时间人们也认识到了载荷比 R 的作用, 3
本文旨在对2024铝板铆接接头的疲劳寿命和疲劳裂纹扩展路径进行数值研究。为此,根据现场观测,获得影响疲劳寿命的参数。研究了相关的几何参数,例如铆钉杆长度、孔径和尺寸公差,以及铆钉的位置模式和铆钉接头的材料。在本研究中,使用有限元方法进行建模以计算等效塑性应变。为此,使用三维弹塑性模型进行模拟。从本研究中的有限元方法获得的信息使得将铆钉放置在这种类型的接头中以用于航空航天工业等高安全性结构成为可能。鉴于2024铝板裂纹扩展问题的重要性,掌握了问题的几何和物理参数,目标是实现铆接接头裂纹扩展和疲劳寿命的精确路径。采用边界元法对试样进行疲劳裂纹扩展模拟,利用边界元法确定了不同加载模式下的应力强度因子,结果表明几何参数和铆钉材料对铝板疲劳裂纹有显著影响。
摘要 本文的目的是开发新的计算工具来研究结构材料中的疲劳裂纹扩展。特别是,我们比较了不同退化策略的性能,以采用基于近场动力学的计算方法研究疲劳裂纹扩展现象。提出了三种疲劳退化定律。其中两个是原创的。首先使用圆柱模型来比较这三种疲劳定律的计算性能,并研究它们对离散化参数变化的稳健性。然后在近场动力学框架中实施疲劳退化策略以进行疲劳裂纹扩展分析。圆柱模型和近场动力学模拟都表明,提出的第三种退化定律在高精度、高稳定性和低计算成本的结合方面是独一无二的。
对于T型样品,热处理后裂纹扩展能量增加2倍(从约23 J增加到约46 J),这是由于裂纹起始能量和裂纹扩展能量重新结合,裂纹扩展能量增加所致。动态载荷图分析表明,热处理后,出现了尖锐的载荷点(视为裂纹起始载荷),下一个载荷峰值表征了新裂纹的起始,如图8a和8d所示。在层状材料中也观察到了类似的材料行为[30]。对样品的原始状态和退火状态进行比较,发现其他材料在热处理后形成了多个裂纹
摘要 本文的目的是开发新的计算工具来研究结构材料中的疲劳裂纹扩展。特别是,我们比较了不同退化策略的性能,以采用基于近场动力学的计算方法研究疲劳裂纹扩展现象。提出了三种疲劳退化定律。其中两个是原创的。首先使用圆柱模型来比较这三种疲劳定律的计算性能,并研究它们对离散化参数变化的稳健性。然后在近场动力学框架中实施疲劳退化策略以进行疲劳裂纹扩展分析。圆柱模型和近场动力学模拟都表明,提出的第三种退化定律在高精度、高稳定性和低计算成本的结合方面是独一无二的。
对于充分的阴极保护,疲劳裂纹起始阻力略优于在空气中,而疲劳裂纹扩展速率与在空气中大致相同。过度阴极保护略微降低了疲劳裂纹起始阻力,但并未使其低于空气中的水平。应力集中系数为 2.0、3.5 和 5.0 的缺口试样的疲劳阻力随应力集中系数的增加而降低。过度阴极保护通过在裂纹内产生钙质氧化皮沉积物来降低疲劳裂纹扩展速率,从而降低了应力强度因子的有效范围。如果将当前的疲劳起始和裂纹扩展数据与其他关于 ASTM A710 钢在海水中的腐蚀疲劳研究的已发表数据进行比较,则当前结果与那些数据高度一致。
数字孪生范式旨在融合从传感器数据、物理模型和正在使用的机械部件的操作数据中获得的信息,以便就部件的健康管理和操作做出明智的决策。在本文中,我们讨论了一种基于数字孪生的机械系统操作规划方法,以实现:a)具有成本效益的维护计划,以及b)系统的弹性运行。由于机械系统的属性及其运行参数、负载和环境本质上是随机的,我们的方法包括概率损伤诊断、概率损伤预测和不确定性下的系统优化。作为一个说明性示例,我们考虑金属部件中的疲劳裂纹扩展问题。我们讨论了一种基于超声导波的概率裂纹诊断框架,该框架可以处理诊断过程中的随机和认知不确定性。我们建立了一个高保真有限元模型来模拟压电效应和超声导波传播。我们使用对物理孪生进行诊断实验获得的测试数据来校准诊断模型中的误差。我们使用修正后的诊断模型对裂纹扩展进行贝叶斯诊断,考虑到被测量噪声破坏的数据,并融合来自多个传感器的信息。我们建立了一个基于有限元的高保真单轴裂纹扩展模型
本研究的目的是通过物理测试和数值模拟,检验复合材料补片在防止裂纹扩展和延长船舶板使用寿命方面的应用。对钢板进行了疲劳试验,以实验验证使用复合材料补片作为防止裂纹扩展和延长结构部件疲劳寿命的手段的有效性。为了证实有限元分析,对使用和未使用复合材料增强材料的样品进行了测试。我们的数值分析研究结果表明,有限元方法可以非常有效地用于准确预测裂纹扩展,特别是对于未修补的钢板。对带有复合材料补片的裂纹板进行数值模拟表明,在测试条件下,使用寿命大约增加了两个数量级,尽管测试结果显示增加量接近一个数量级。差异归因于两个因素:与补片脱粘相关的失效机制和补片本身的实际开裂。因此,至关重要的是实施质量控制的粘合程序,并根据母板的特性和断裂条件优化补片系统的几何形状和特性。