正是在这种背景下,IN-SPACe 发布的印度《印度太空经济十年愿景与战略》报告预测,2033 年对地观测的市场潜力将达到 80 亿美元,增长率为 28%。1 印度严重依赖对地观测数据来满足各种关键需求,包括天气监测、气候变化监测、农业部门应用、城市规划、交通、基础设施以及最重要的国家安全。建立主权能力以确保能够获得对地观测数据对于印度的国家利益至关重要。这包括增强气候监测、灾害管理、农业规划和国防行动的能力。除此之外,基础设施、能源和采矿、金融和保险等其他各个行业都可以从基于对地观测数据的应用中受益匪浅。在未来十年内,在国家内部发展专业知识以满足这些需求至关重要。在这方面,本思想领导力详细介绍了基于 EO 的应用的关键价值主张。它还深入探讨了 EO 平台如何支持数据的获取、处理和分析。建立这样的平台将实现下游能力,同时也支持印度的主权需求,加强国际关系,并促进社会经济发展。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
全球气候监测需要从卫星数据记录中获取产品,正如《支持联合国气候变化框架公约的全球气候观测系统实施计划》(GCOS-92,2004 年 10 月;“GIP”)所承认的那样。本文件为 GIP 提供了有关生成这些产品的补充细节。它的主要目的是协助支持从太空进行地球观测的缔约方 1 响应 GIP 的要求。它还与所有获取卫星数据记录和/或将衍生产品用于气候应用的缔约方有关。此外,广泛的缔约方可以为满足对卫星数据和衍生产品的校准和验证的现场数据的迫切需求做出贡献。支持《联合国气候变化框架公约》的全球气候观测系统实施计划的背景 如果缔约方单独和集体全面实施全球气候观测系统,将形成一个系统,提供基本气候变量 2 (ECV) 及其相关产品的全球观测,以协助缔约方履行《联合国气候变化框架公约》第 4 条和第 5 条规定的责任。此外,它还应提供世界气候研究计划 (WCRP) 和政府间气候变化专门委员会 (IPCC) 所需的系统和持续观测。具体而言,拟议的系统将提供以下信息: • 描述全球气候系统的状态及其变化;
全球气候监测需要从卫星数据记录中获取产品,正如《支持联合国气候变化框架公约的全球气候观测系统实施计划》(GCOS-92,2004 年 10 月;“GIP”)所承认的那样。本文件为 GIP 提供了有关生成这些产品的补充细节。它的主要目的是协助支持从太空进行地球观测的缔约方 1 响应 GIP 的要求。它还与所有获取卫星数据记录和/或将衍生产品用于气候应用的缔约方有关。此外,广泛的缔约方可以为满足对卫星数据和衍生产品的校准和验证的现场数据的迫切需求做出贡献。支持《联合国气候变化框架公约》的全球气候观测系统实施计划的背景 如果缔约方单独和集体全面实施全球气候观测系统,将形成一个系统,提供基本气候变量 2 (ECV) 及其相关产品的全球观测,以协助缔约方履行《联合国气候变化框架公约》第 4 条和第 5 条规定的责任。此外,它还应提供世界气候研究计划 (WCRP) 和政府间气候变化专门委员会 (IPCC) 所需的系统和持续观测。具体而言,拟议的系统将提供以下信息: • 描述全球气候系统的状态及其变化;
孤子是局部非线性波,可以像粒子一样传播和相互作用。理论研究表明,水波、光纤中的光脉冲、超导设备中的磁通量子和生物分子的相干激发等现象都可以是孤子。计算机模拟表明,在存在摩擦损耗机制、外部驱动力和热涨落等现实特征的情况下,可以形成孤子。孤子在这些情况下将存在足够长的时间,以至于成为波激发时间演化的重要特征。但孤子动力学的实验演示仍然很少。因此,最值得注意的是,Fujimaki, Nakajima 和 Sawada 1 以及 Wu, Wheatley, Putterman 和 Rudnick 2 最近发表的两篇展示真实系统中孤子的论文。Fujimaki 等人的工作。处理电子约瑟夫森传输线 (JTL) 上的孤子碰撞,该传输线长 1.8 毫米,由一系列 31 个离散约瑟夫森结(交错的超导层和绝缘层)组成。在 JTL 的连续版本中,约瑟夫森效应(超导电子穿过绝缘层)是由超导薄膜对之间的弱耦合引起的。这种重叠几何形状由粒子物理学家最初开发的正弦-戈登方程非常精确地建模。1962 年,Perring 和 Skyrme 证明这个非线性偏微分方程具有他们称之为“扭结”和“反扭结”的解,之后
以微克/立方米表示的长期(年平均)室外 PM 2.5 暴露估计值。顶部:PM 2.5 总暴露量。该地图考虑了 PM 2.5 的所有来源,这对于评估暴露的健康后果最为相关。底部:PM 2.5 暴露量,不包括矿物粉尘(例如沙漠中的沙子)和海盐成分。该地图突出显示了更直接的人为来源。但是,人类活动也可能对粉尘排放产生重大影响(例如通过农业实践)。来源:经合组织绿色增长指标 2017(即将发布)。粮农组织高卢办事处 (2014)。