摘要:我们评估了一组模型中的中尺度搅拌的表示,以根据北大西洋示踪剂释放实验(Natre)收集的微结构数据得出的估计值。我们从法拉利和波尔津的大约温度差异预算框架中大量汲取灵感。该框架假设温度差异的两个来源远离边界:首先,大规模平均垂直梯度通过小规模的湍流垂直搅拌;其次,中尺度涡流对大规模平均层梯度的横向搅拌。温度差异被转化,并以微观结构观测值估算的速率x进行平均转移量表以在微观尺度上进行最终耗散。海洋模型通过垂直混合参数化代表这些途径,以及沿等副侧面混合参数化(如果需要的话)。我们评估后者作为Natre数据集的残差的差异速率,并在一组模型模拟中与参数化表示形式进行比较。我们发现,由于在平行的海洋程序2(POP2)1/10 8模拟中,横向搅拌引起的变量产生很好地同意,并且在估计的误差栏内,并根据NATRE估计推断出来。在其他扩散率估计值中不存在这种元素值,这表明在解释ECCOV4R4调整后的侧向扩散率时需要补偿错误和谨慎。pop2 1 8模拟以及估计海洋版本4版本4(ECCOV4R4)模拟的循环和气候模拟似乎通过应用横向扩散率来消散数量级过大的差异,与NATRE估计相比,尤其是低于1250 m。 ECCOV4R4-调整后的横向扩散率升高,而微观结构表明X升高来自中尺度搅拌。
摘要:澳大利亚R/V调查员的最新航行在整个偏远的南大洋中提供了前所未有的降水观察结果,该降水量既是海洋降雨和冰相降水测量网络(OceanRain)海上圆点和双极化C波段C-Band C-Band Cane Radar(Oceanpol)。本研究采用这些观察结果来评估GPM(IMERG)的全球降水测量(GPM)综合多卫星检索和ECMWF(ERA5)降水产物产生的第五次重大全球重新分析。以60分钟和0.25 8(; 25 km)的分辨率工作,在整个过程中最常观察到小雨和毛毛雨。对海洋评估时,imerg产物高估了降水强度,但捕获了出现频率。从天气/过程量表中,发现IMERG在暖额和高纬度气旋条件下是最不准确(高估的强度),通常会预先发送多层云。在临时条件下,imerg低估了降水频率。相比之下,ERA5的技能在各种综合条件下更加一致,除了高压频率(强度)高度高估(低估)的高压条件。使用Oceanpol Radar,这是一个面积到区域分析(分数技能得分),发现ERA5的技能比Imerg更高。在海洋径流计,iMerg和ERA5之间的阶段分类中几乎没有共识。比较因不同数据集中的相分类的各种假设而变得复杂。
理想情况下,当多个观测员意识到新事件时,它们将遵循协调的观察策略。但是,根据每个新事件的时间表,观测值之间的通信可能太慢,无法有用。在这种情况下,观察者可以做的最好的方法是根据其本地信息诉诸最佳自主决策。我们代表了一组遥远的观察者作为团队游戏所面临的决策问题。然后,我们考虑一些样本场景,并确定可以通过经典观察策略获得的最佳性能。我们继续表明,在这些情况下,共享量子状态的可用性使观测值能够以严格改善其最佳不协调性能的方式协调其选择。