(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月7日发布。 https://doi.org/10.1101/2025.03.02.641080 doi:Biorxiv Preprint
抽象密钥消息提出了一个原始的GWAS模型,该模型集成了等位基因的祖先,并允许探测背景特定的添加剂和优势QTL,涉及异性群互补性和混合性能。抽象的玉米遗传多样性被构造成彼此选择和改善的遗传群体。此过程会随着时间的流逝而增加组的互补性和分化,并确保由小组间杂交产生的杂种表现出较高的表现和异性症。为了确定与混合性能和杂种群体互补涉及的基因座,我们引入了一个原始的关联研究模型,该模型将等位基因的异性群的起源与异性构成群体分离,并将其与常规的添加剂/优势模型进行了比较。这个新模型应用于凹痕和弗林特线之间的阶乘,以及具有两种不同分析层的凹痕混合线之间的拨号线:在每个环境中和多种环境中。我们确定了所有特征的几个强大的添加剂QTL,包括一些用于开花时间的众所周知的加性QTL(在染色体8上的VGT1/2区域)。屈服特征在拨号面板中显示出显着的非加性效果。大多数检测到的产量QTL表现出过度势力或更有可能的伪过分效应。在这些QTL上明显过度污染,导致了遗传组互补性的一部分。环境之间的比较显示,添加QTL效应的稳定性高于非添加效应。我们还揭示了显示遗传群起源作用的大型染色体区域。根据局部杂种群的起源,几个QTL显示出效应的变化。总的来说,我们的结果说明了混合面板如何与专用的GWAS建模相结合,允许识别新的QTL,这些QTL无法通过通过传统建模分析的经典混合面板无法揭示的新QTL。
在当今快节奏的世界中,各种系统中自动化和效率的需求已变得至关重要。这样一个领域是出勤管理,该领域传统上依靠手动或基于卡的方法,这两者通常都耗时且容易出现错误。这些方法可能导致不准确,管理不善或操纵出勤记录。此外,诸如代理出勤率(其他人代表他人的出勤率)之类的问题进一步使过程变得复杂。随着AI和计算机视觉技术的兴起,这些问题现在可以通过自动化和安全的解决方案有效地解决。基于AI的出勤系统,由面部识别技术提供支持,为这些问题提供了更有效,准确和防篡改的解决方案,从而确保了出勤跟踪的透明度和可靠性。该项目旨在开发这样的系统,以利用面部识别来准确识别个人并实时记录其出勤率,从而降低与传统方法相关的风险。
引言:阿尔茨海默病 (AD) 是一种进行性神经退行性疾病,全球至少有 2700 万人受其影响。这种疾病不仅严重影响患者及其家人的生活,还给社会带来沉重的经济负担。目前尚无明确的疾病改良疗法,各种疗法已被开发用于控制 AD 的症状。药物再利用是一种有价值的替代方法,可以发现已获批或正在研究的药物在其原有适应症之外的新用途。RNA 测序 (RNA-seq) 是发现疾病异质性基因表达的一种实用方法。因此,我们的研究应用了一种计算药物再利用流程,基于从 RNA-seq 数据中提取的 AD 差异基因表达特征来探索候选药物。方法与材料:从 GEO 数据库 (https://www.ncbi.nlm.nih.gov/geo/) 获取了 10 例对照和 8 例 AD 死后人类海马脑组织(登录号为 GSE173955)的表达谱。使用 GEO2R 识别 AD 与正常组织之间的差异表达基因 (DEG)。接下来,使用 LINCS 数据库识别 AD 疾病的潜在候选药物。然后,通过大量文献综述和药物研究,筛选出排名靠前的 FDA 批准药物。反过来,将 DEG 导入 STRING 数据库,以识别蛋白质之间的相互作用关联。之后,选择所有显著性综合评分为 0.7 的相互作用进行进一步分析。选择连接度最高的合适基因作为枢纽基因。靶标扫描数据库是一个专门收集 microRNA-mRNA 靶向关系的数据库。这些数据库用于获取枢纽基因相关的 miRNA。结果:本研究鉴定出 1,878 个 |log2FC| ≥ 1 且 p 值 ≤ 0.05 的基因为 DEG:909 个基因上调,969 个基因下调。能够逆转 AD 表达模式的显著改变的药物谱包括奥沙利德、莫米洛替尼和恩扎妥林。此外,S100A8 已被确定为 Cytoscape 中最突出的枢纽基因之一,在 AD 的背景下它可以被 miR-98-5p 抑制。结论和讨论:在本研究中,我们提出了几种潜在的可重新利用的候选药物,莫沙必利、莫米洛替尼和恩扎斯塔林,以及 miR-9-5p,用于治疗 AD 进展。莫沙必利目前用于治疗 2 型糖尿病、功能性消化不良、功能性便秘和上腹痛综合征。莫米洛替尼是一种 Janus 激酶 1 和 2 抑制剂,用于治疗骨髓纤维化。恩扎斯塔林已用于治疗复发性多形性胶质母细胞瘤。我们的研究结果可能指导针对不同疾病进展阶段的进一步重新利用研究。此外,我们报告 S100A8 充当炎症介质,其水平随着大脑年龄的增长而增加。MiR-98-5p 有可能抑制 AD 中的 S100A8 表达。
已评估了部分N-甲基-D-天冬氨酸受体(NMDAR)激动剂D-环甲烯(DCS),用于治疗多种精神疾病,包括痴呆,精神分裂症,抑郁症,抑郁症和暴露基于心理治疗的增强。大多数DC的潜在精神科应用(如果不是全部)的目标是增强或恢复认知功能,学习和记忆。它们的分子相关性是长期的突触可塑性;许多形式的突触可塑性取决于NMDA受体的激活。在这里,我们全面研究了通过DCS及其机制对海马中不同形式的突触可塑性的调节。我们发现,DCS在幼年大鼠的海马脑切片中阳性长期突触可塑性(长期突触增强,LTP和长期突触抑制)的长期突触可塑性(长期突触增强,LTP和长期突触抑制)的形式进行了正面调节。dcs与NMDAR的D-塞林/甘氨酸结合位点结合。对该部位的药理抑制作用阻止了LTP的诱导,而D-塞林/甘氨酸结合位点的激动剂增强了LTP,并且可以用功能代替LTP诱导范围。内源性D-丝氨酸最可能的起源是星形胶质细胞,其胞吐作用受星形胶质细胞代谢性谷氨酸受体(MGLUR1)调节。因此,NMDAR中的D-丝氨酸/甘氨酸结合位点是针对可塑性相关疾病的心理药物干预措施的主要目标。在与突触后神经元相邻的星形胶质细胞中的星形胶质细胞的功能消除,MGLUR1受体的抑制和G蛋白信号传导,阻止了NMDAR依赖性LTP和LTD的诱导。我们的结果支持增强DC和D-塞林介导的Gliotransersiss的双向依赖性海马突触可塑性的双向范围。
简介:三阴性乳腺癌(TNBC)的特征是没有雌激素受体(ER),孕酮受体(PR)和人表皮生长因子受体2(HER2)表达。它具有高度侵入性和侵略性,使其成为预后最差的乳腺癌的亚型。目前,全身化疗是主要的治疗选择,但靶向疗法仍然无法使用。因此,迫切需要确定新型的生物标志物来早期诊断和治疗TNBC。方法:我们对转录组和甲基化数据进行了综合分析,以鉴定甲基化调节的差异表达基因(MDEGS)。基因本体论(GO)分析,基因和基因组(KEGG)途径分析的京都百科全书,以及蛋白质 - 蛋白质相互作用(PPI)网络分析,以研究HUB基因对TNBC诊断和预后的影响。随后,使用逆转录定量PCR(RT-QPCR)和定量甲基化特异性PCR(QMSP),在TNBC细胞系MDA-MB-231和正常乳腺上皮细胞系MCF-10A中验证了关键基因的表达水平和DNA甲基化模式。结果:通过转录组分析积分分析确定了98个上调和87个下调基因。通过融合甲基化数据,我们进一步鉴定了22种具有高甲基化表达(甲基甲基甲基化)和32个基因,而高甲基化表达较低(高甲基化)。Kaplan-Meier生存分析表明,KIF11,CCNB1和PLK1与TNBC中较高的危险比(HR> 1,p <0.05)相关。低位级主要参与核分裂,细胞器裂变,纺锤体形成,染色体和动孔发育以及蛋白质结合。KEGG途径分析表明,这些基因富含孕酮介导的卵母细胞成熟,细胞周期调节和卵母细胞减数分裂。超高与细胞增殖,激素反应,疼痛,细胞外基质组成以及与硫化合物,肝素和糖胺聚糖的结合有关。PPI网络分析确定了七个中心基因-EXO1,KIF11,FOXM1,CENPF,CCNB1,PLK1和KIF23 - 它们在TNBC组织中都显着过表达并彼此正相关(p <0.05)。接收器的工作特性曲线分析表明,曲线下的面积(AUC)的所有七个基因都超过0.9(p <0.05),表明诊断潜力很强。体外验证实验表明,与MCF-10A细胞相比,MDA-MB-231细胞表现出较高的KIF11,CCNB1和PLK1的mRNA表达水平,而其DNA甲基化水平较低。结论:这项研究确定了七个少量级,包括EXO1,KIF11,FOXM1,CENPF,CCNB1,PLK1和KIF23,它们参与了细胞周期和有丝分裂过程的调节,并且具有TNBC的诊断生物标志物的重要性。值得注意的是,KIF11,CCNB1和PLK1的表达升高与TNBC患者的预后不良有关。这些发现有助于提高对表观遗传学分子机制的理解
硅纳米结构(如纳米式阵列)在各种应用中具有巨大的潜力,例如光伏电池[1],传感器[2],信息存储[3],仅举几例。纳米果(NNS)被定义为具有较高纵横比的纳米材料。那些属于两个主要类别:单针,外部操纵以接触细胞和组织(近场显微镜(AFM),微型操纵器)或支持基板支撑的垂直高纵横比纳米结构的阵列。前者涵盖了各种纳米结构,包括纳米线,纳米柱,多孔纳米酮,纳米管和纳米膜。各种材料/尺寸/形状使每种类型的NN具有不同的特定感应需求的特性,也就是说,在机械生物学,纳米电机生理学,光遗传学,纳米遗传学,转染/载体化/矢量化(药物输送)中,各种应用[4] [4]。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2025年3月1日发布。 https://doi.org/10.1101/2025.02.26.640353 doi:Biorxiv Preprint
Sylvain Cailliez,David Chalet,Philippe Mannessiez。通过非破坏性分析方法同时鉴定锂离子袋细胞的热容量和各向异性热导电性。电源杂志,2022,542,pp.231751。10.1016/j.jpowsour.2022.231751。hal- 03703340
COVID-19条件(PCC)及其长期症状范围的机制尚不清楚。这项研究在一年的非住院COVID-19患者的子集中研究了DNA甲基化模式,该模式持续症状和生活质量降低,称为PCC+(COVID-19疾病后加)。在22个PCC+个体和22个匹配的Covid-19康复(PCC-)的队列中,我们确定了随着时间的推移而减少的组之间的明显DNA甲基化差异。TXNRD1基因的甲基化变化与认知症状和疲劳显着相关,这暗示了PCC病理学中的氧化还原失衡。途径分析显示,PI3K-AKT和AMPK信号通路的富集,可能是二甲双胍在降低PCC发生率中观察到的效力的潜在。尽管我们发现两组之间的表观遗传年龄加速没有差异,但我们观察到RAS和RAP1信号通路的甲基化纵向变化。这些发现提供了对PCC+机制的关键见解,并将氧化应激途径作为治疗干预的有希望的目标。