大多数现有的扩散模型准确性的理论研究,尽管很重要,但假设得分函数已近似于一定的精度,然后使用此先验绑定来控制发电的错误。本文相反,对整个生成过程(即培训和采样)提供了第一个定量的理解。更确切地说,它对梯度下降下的脱氧分子分数进行了非质合分析分析。此外,还提供了方差爆炸模型的精制采样误差分析。这两个结果的组合产生了完整的误差分析,该分析阐明了(但这一次,理论上)如何设计训练和采样过程以进行有效产生。例如,我们的理论意味着偏爱噪声分布和训练中的减肥权重,这些训练与Karras等人中使用的偏爱。[30]。它还提供了对抽样时间和方差时间表的选择的观点:当分数经过良好的训练时,Song等人的设计。[46]更可取,但是当训练较少时,Karras等人的设计。[30]变得更加可取。
跟踪光伏农场时,主要约束要求 z 轴指向,以便反射光引导至目标 不跟踪时,移动到空闲阶段,反射器边缘朝向太阳,以防止杂散光。主要约束是 x 轴朝向太阳。 目前正在进行刚性和柔性体的指向误差分析 继续研究由于指向误差导致的能量传输损失(IAC 见!)
在过去的三十年中,使用量子计算机估算分子哈密顿量的基态能量的成本已显著降低。然而,人们很少关注估算其他可观测量相对于所述基态的期望值,而这对于许多工业应用来说非常重要。在这项工作中,我们提出了一种新颖的期望值估计 (EVE) 量子算法,该算法可用于估算任意可观测量相对于系统任何本征态的期望值。具体来说,我们考虑了两种 EVE 变体:基于标准量子相位估计的 std-EVE 和利用量子信号处理 (QSP) 技术的 QSP-EVE。我们对这两种变体都进行了严格的误差分析,并最小化了 QSP-EVE 的单个相位因子数量。这些误差分析使我们能够在各种分子系统和可观测量中为 std-EVE 和 QSP-EVE 生成常数因子量子资源估计。对于所考虑的系统,我们表明 QSP-EVE 可将 (Toffoli) 门数减少多达三个数量级,并将量子位宽度减少多达 25%,而标准 EVE 则可实现。虽然估计的资源数量对于第一代容错量子计算机来说仍然太高(对于所考虑的示例,大约在 10 14 到 10 19 个 Toffoli 门之间),但我们的估计对于期望值估计和现代 QSP 技术的应用而言都是同类中的首例。
在本文中,我们提出了高效的量子算法,这些算法比解决量子最优控制问题的经典算法快得多。该问题涉及找到在时间 T 时最大化物理量的控制变量,其中系统由时间相关的薛定谔方程控制。这种类型的控制问题也与机器学习有着错综复杂的关系。我们的算法基于时间相关的汉密尔顿模拟方法和快速梯度估计算法。我们还提供了全面的误差分析,以量化各个步骤的总误差,例如控制函数的有限维表示、薛定谔方程的离散化、数值求积和优化。我们的量子算法需要容错量子计算机。
第 2 和第 3 节列出了适用和参考文献以及本文档特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述的参考,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求及其可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统以及处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节涉及 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节对 NO 2 数据产品得出了一些结论。
· 主要内容:概率与统计、均值与方差、测量与统计误差、二项分布与泊松分布、高斯分布、中心极限定理、误差传播、卡方分布、最小二乘拟合、假设检验、基本实验室方法。· 实验室主题:掷两个六面骰子的概率、π 的测量、从一打六面骰子中掷出二的概率、宇宙射线粒子通过盖革计数器的速率、基本“弹球机”的高斯分布、伽马射线能谱、NaI 探测器的能量分辨率、放射性 137 Ba 同位素的寿命。· 教科书:John Taylor 著《误差分析导论》;第 1 至 12 章(第 9 章除外)的各个部分。教科书未涵盖的主题的讲座和实验笔记:https://www.asc. ohio-state.edu/gan.1/teaching/spring18/3700.html。
第 2 和第 3 节列出了适用文件和参考文件以及本文件特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求和可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统和处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节讨论了 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节针对 NO 2 数据产品提出了一些结论。
第 2 和第 3 节列出了适用和参考文献以及本文档特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述的参考,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求及其可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统以及处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节涉及 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节对 NO 2 数据产品得出了一些结论。
第 2 和第 3 节列出了适用文件和参考文件以及本文件特有的术语和缩写;同行评审论文和其他科学出版物的参考文献列于附录 G。第 4 节提供了对 TROPOMI 仪器的一般描述,该描述适用于 TROPOMI 2 级数据产品的所有 ATBD。第 5 节介绍了 NO 2 数据产品、其历史、检索设置、产品要求和可用性。第 6 节概述了 TROPOMI NO 2 数据处理系统和处理过程中各个步骤的重要方面。第 7 节列出了有关 NO 2 数据产品可行性的一些方面,例如计算工作量和处理所需的辅助信息。第 8 节讨论了 NO 2 数据产品的误差分析。第 9 节简要概述了验证问题和可能性,例如活动和卫星比对。第 10 节针对 NO 2 数据产品提出了一些结论。