细菌培养物通过促进植物生长,增强土壤生育能力和控制害虫而在农业中起着至关重要的作用。固定细菌,例如根瘤菌,与豆科植物形成共生关系,将大气氮转化为植物可以使用的形式。这种自然过程减少了对化肥的需求,从而导致了更可持续的农业实践。此外,源自细菌培养物(如苏云金芽孢杆菌(BT))的生物农药可用于控制虫害,而不会损害有益的生物或环境[4]。
摘要:豆科植物能够与土壤细菌(即根瘤菌)建立共生关系。豆科植物与根瘤菌的共生关系会形成共生根瘤,而根瘤菌会固定大气中的氮。宿主植物会控制共生根瘤的数量以满足其氮需求。研究表明,根部在接种根瘤菌和/或硝酸盐后产生的 CLE(CLAVATA3/胚胎周围区域)肽可以控制共生根瘤的数量。此前,研究发现,在蒺藜苜蓿中,MtCLE35 基因会受到根瘤菌和硝酸盐处理的上调,当过表达时,会系统性地抑制根瘤形成。在本研究中,我们获得了几个使用 CRISPR/Cas9 介导系统突变 MtCLE35 基因的敲除系。与野生型植物相比,敲除 MtCLE35 基因的 M. truncatula 品系在硝酸盐存在的情况下产生的根瘤数量增加。此外,在硝酸盐存在的情况下,接种根瘤菌的根中其他两个与结瘤相关的 MtCLE 基因 MtCLE12 和 MtCLE13 的表达水平降低,而硝酸盐处理和接种根瘤菌的对照根中 MtCLE35 基因表达没有显著差异。总之,这些发现表明 MtCLE35 在高硝酸盐条件下对根瘤数量起着关键作用,在高硝酸盐条件下其他与结瘤相关的 MtCLE 基因的表达水平降低。
前所未有的气候条件变化将如何影响某些作物的产量和生产力以及它们对现有压力、非生物和生物相互作用的反应,是全球关注的关键问题。气候变化还会改变自然物种的丰富度和分布,或有利于入侵物种,进而改变生态系统动态和生态系统服务的提供。C3 植物和 C4 植物的基本解剖学差异导致它们对气候变化的不同反应。对于具有 C3 光合作用途径的植物,大气中二氧化碳 (CO2) 的增加会正向调节光合碳 (C) 同化并抑制光呼吸。豆科植物是 C3 植物,它们可能通过各种策略处于有利地位,以增加生物量和产量。本文全面介绍了植物生理和分子特性方面的最新进展,特别强调了气候变化情景下 CO2 浓度升高条件下的豆科植物。本文还讨论了未来行动的战略研究框架,该框架整合了基因组学、系统生物学、生理学和作物建模方法,以应对气候变化。测序和表型分析方法的进步使得利用大量遗传和基因组资源成为可能,通过部署高分辨率表型分析和高通量多组学方法来改良性状。以农业系统设计和管理、气候影响预测和疾病预报为重点的综合作物建模研究也可能有助于规划适应性。因此,结合基因组学、植物分子生理学、作物育种、系统生物学和综合作物-土壤-气候建模的综合研究框架将非常有效地应对气候变化。
但是,这种系统也存在一些缺点。反刍动物在正常消化过程中会产生大量气体。这些气体要么通过打嗝排出,要么通过胃肠道排出。如果有什么东西妨碍了气体从瘤胃中排出,气体就会积聚起来,导致胃胀。气体的积聚会影响它们的呼吸能力,并可能导致窒息死亡。胃胀可能是由于将反刍动物过快地引入茂盛的牧场而引起的,特别是如果牧场的豆科植物含量高(三叶草或紫花苜蓿)。如果在饲养场中,反刍动物过快地引入谷物配给,如果配给不是逐渐引入的,也会导致胃胀。
共生[9]。- 在施用合成氮肥[14]以及与微藻结合时,矿物营养效率的提高了植物中矿物营养的效率[6,10]; - 鉴定出重金属吸收及其在植物可用部分中的积累的减少[12,13,18]; - 证明了Origanum Majorana L. [18]中精油质量的提高,Physalis Physalis Peruviana L. [13]的脂肪酸组成的改变以及金仰利官方类胡萝卜素的变化[15]; 1.2。在一系列出版物中,豆科植物与氮固定细菌之间的共生关系[11,17,19,20,23,23,25,26,28],助理教授Christozkova表明了共生氮固定的意义
原料主要由纤维素和半纤维素组成,木质素含量低于木质纤维素材料,包括粮食和饲料作物残渣,如稻草、秸秆、果壳和壳;淀粉含量低的草类能源作物,如黑麦草、柳枝稷、芒草、巨蔗;主要作物前后的覆盖作物;草地作物;工业残渣,包括从粮食和饲料作物中提取植物油、糖、淀粉和蛋白质后的工业残渣;以及来自生物废物的材料。草地作物和覆盖作物被理解为临时、短期播种的牧场,由淀粉含量低的草豆科植物混合物组成,用于获取牲畜饲料并改善土壤肥力,从而获得更高的可耕主要作物产量。
驯化是一个动态且持续的过程,通过选择理想的农作物特征来将野生物种转化为栽培物种,以满足人类的需求,例如口味、产量、储存和栽培方法。人类的植物驯化始于大约 12,000 年前的新月沃地,并传播到世界各地,包括中国、中美洲、安第斯山脉和近大洋洲、撒哈拉以南非洲和北美东部。印度河流域文明在豆科植物的驯化中发挥了重要作用。木豆、黑豆、绿豆、扁豆、蛾豆和马豆等作物起源于印度次大陆,新石器时代的考古记录表明这些作物最早是由该地区的早期文明驯化的。野生祖先驯化并进化为当今的优良品种,对全球粮食供应和农作物改良做出了重要贡献。此外,食用豆科植物通过保护人类健康和最大限度地减少气候变化影响,为粮食安全做出了贡献。在驯化过程中,豆科作物物种经历了严重的遗传多样性丧失,品种中仅保留了非常狭窄的变异范围。在种子传播和跨大陆移动过程中,遗传多样性进一步减少。一般来说,只有少数性状在整个物种的驯化过程中具有突出地位,例如抗碎裂性、种子休眠丧失、茎生长行为、开花-成熟期和产量性状。因此,识别和了解驯化反应位点通常有助于加速新物种的驯化。导致驯化结果发生重大改变的基因和代谢途径可能有助于新作物的快速驯化。此外,“组学”科学、基因编辑技术和功能分析的最新进展将加速新作物物种的驯化和作物改良,而不会损失太多遗传多样性。在这篇评论中,我们讨论了主要粮食作物的起源、多样性中心和种子移动
(42)“非食用纤维素材料”是指主要由纤维素和半纤维素组成,且木质素含量低于木质纤维素材料的原料,包括粮食和饲料作物残留物,如稻草、秸秆、果壳和贝壳;淀粉含量低的草类能源作物,如黑麦草、柳枝稷、芒草、巨蔗;主要作物前后的覆盖作物;草地作物;工业残留物,包括粮食和饲料作物提取植物油、糖、淀粉和蛋白质后的残留物;以及来自生物废弃物的材料,其中草地作物和覆盖作物被理解为临时的、短期播种的牧场,由淀粉含量低的草和豆科植物混合物组成,用于获取牲畜饲料和提高土壤肥力,从而获得更高的可耕主要作物产量;
摘要:蛋白酶可通过蛋白水解降解或与抑制剂分子结合而失活。蛋白酶抑制剂在自然界中分布广泛,是与蛋白水解酶形成非常稳定的复合物的蛋白质。植物蛋白酶抑制剂是小蛋白质,通常以高浓度存在于储存组织中。在本研究中,结果表明,豆科植物对胰蛋白酶的抑制百分比较高,其中抑制活性最高的是鹰嘴豆 (92.33%),其次是豇豆 (60%)、蚕豆 (52.34%)。在磷酸盐缓冲液 (PB) 中制备的鹰嘴豆粗提取物表现出最大的蛋白酶抑制活性 (79%)。然而,与其他级分相比,发现饱和度为 60-90% (w/v) 的级分能有效沉淀蛋白酶抑制剂。非还原性 SDS-PAGE 中显示一条分子量为 23 KDa 的多肽带。