本演示文稿包含前瞻性陈述,任何相关演示文稿也可能包含前瞻性陈述,其含义符合 1995 年《私人证券诉讼改革法》的规定。公司打算让此类前瞻性陈述受到《1933 年证券法》(经修订)第 27A 节和《1934 年证券交易法》(经修订)第 21E 节中前瞻性陈述的安全港条款的约束。本文和任何相关演示文稿中包含的所有与历史事实无关的陈述均应被视为前瞻性陈述,包括但不限于有关我们候选产品和基因编辑方法的临床前和临床开发、研究进展和预期安全性、有效性和益处的陈述,包括编辑效率、确定的结果、治疗编辑、安全性和差异化方面; ARCUS 基因编辑方法在治疗 m.3243 相关 PMM、常见缺失(del_mtDNA 4977)和 m.5024C>T 方面的治疗潜力,包括 ARCUS 以高特异性优先靶向和消除突变型 m.3243G、del_mtDNA 4977 和 m.5024C>T mtDNA 的能力,且没有脱靶活性,CTA 和/或 IND 申请的预期时间,mitoARCUS 转移异质体的能力,以及我们基因编辑方法的预期安全性、有效性和益处;ARCUS 核酸酶对基因插入、大基因缺失、线粒体基因编辑和其他复杂基因编辑方法的适用性;以及调控过程的预期时间。在某些情况下,您可以通过“目标”、“预期”、“方法”、“相信”、“考虑”、“可能”、“旨在”、“估计”、“期望”、“目标”、“打算”、“看起来”、“可能”、“使命”、“计划”、“可能”、“潜在”、“预测”、“项目”、“承诺”、“追求”、“应该”、“目标”、“将”、“会”等词语或表达来识别前瞻性陈述,或者这些词语或类似词语或表达的否定形式旨在识别前瞻性陈述,但并非所有前瞻性陈述都使用这些词语或表达。
生物技术育种方法应用于木本植物的主要瓶颈是由于几种基因型表现出的体外再生困难。另一方面,木本植物,尤其是葡萄树(Vitis vinifera L.),使用大部分农药和其他昂贵的农业投入,因此开发有效的遗传改良方法迫在眉睫。基因组编辑是一种非常有前途的技术,特别是对于酿酒葡萄基因型,因为它允许在一个步骤中修改所需的基因,保留在优良品种中选定和重视的所有品质性状。本文报道了一种用于生产无转基因葡萄植物的基因组编辑和再生方案,利用脂质转染胺介导的 CRISPR - Cas9 核糖核蛋白(RNP)直接递送以靶向八氢番茄红素去饱和酶基因。我们重点研究了内比奥罗 (V. vinifera),这是一种极难在体外生长的葡萄酒基因型,可用来生产优质葡萄酒,例如巴罗洛和巴巴莱斯科。文献中提供的用于高度胚胎发生的葡萄树基因型的 PEG 介导的编辑方法无法使难生长的内比奥罗获得正常的胚胎发育。相反,脂质转染剂对原生质体活力和植物再生没有负面影响,转染后约 5 个月即可获得完全发育的编辑植物。我们的工作是使用脂质转染剂在植物原生质体中递送编辑试剂的首批例子之一。在酿酒葡萄基因型育种方面取得的重要成果可以扩展到其他重要的酿酒葡萄品种和难生长的木本植物。
足细胞是肾小球滤过屏障的细胞,在肾脏疾病中起着至关重要的作用,并作为新疗法的潜在靶点而受到关注。脑源性神经营养因子 (BDNF) 在修复足细胞损伤方面表现出良好的效果,但其通过肠外给药的疗效受到半衰期较短的限制。低温敏感脂质体 (LTSL) 是一种有前途的靶向 BDNF 递送工具,可在封装后保留其活性。本研究旨在改进 LTSL 设计,以便有效地封装 BDNF 并靶向释放到足细胞,同时保持稳定性和生物活性,并利用靶向肽的结合。虽然环状 RGD (cRGD) 用于体外靶向内皮细胞,但归巢肽 (HITSLLS) 被结合以供体内肾小球内皮细胞更特异性地摄取。载有 BDNF 的 LTSL 成功修复了足细胞中的细胞骨架损伤,并降低了肾小球共培养模型中的白蛋白通透性。cRGD 结合增强了内皮细胞的靶向性和摄取,突出了当 BDNF 释放由热响应性脂质体降解诱导时治疗效果的改善。在体内,靶向 LTSL 显示出在肾脏中积聚的证据,而它们的 BDNF 递送减少了蛋白尿并改善了肾脏组织学。这些发现突出了 BDNF-LTSL 制剂在恢复足细胞功能和治疗肾小球疾病方面的潜力。
在适应异构生活方式的过程中,质体凝结通常是充分理解的,并且已经得出了与谱系无关的模型。然而,了解最小质体的尖端上相对旧的异养谱系的进化轨迹对于补充和扩大当前知识至关重要。我们研究了羟基科,这是最古老且研究最少的寄生虫谱系之一。质体比较基因组学使用了八个已知物种的hydnora属和三种prosopanche,揭示了高度的结构相似性和共享基因含量。与重复含量的差异(倒转和直接重复序列(DRS))相反。我们确定了不同的重复内容和位置的变化,可能是由于多个独立的审查事件以及Prosopanche的DR增益而产生的。考虑了不同的进化轨迹,并基于完全分辨和支持的物种级的系统发育假说,我们描述了三种可能的,不同的模型来解释脑质系质质体状态。出于比较目的,我们还报告了密切相关的自养生属乳糖(乳酸菌科)和Thottea(Aristolochiaceae)的第一个质体基因组。
分别为5.9±0.9 µ f或83±13 µ f/cm 2; n = 3),尽管阳离子的尺寸非常不同
摘要:在药物开发中,活性物质在体外表现出功效但在体内缺乏特异性达到其目标的能力的情况并不少见。因此,靶向药物递送已成为制药科学的主要关注点。自 1995 年 Doxil ® 获批以来,脂质体已成为靶向药物递送领域的领先纳米颗粒。它们的低免疫原性、高多功能性和有据可查的疗效使其在临床上用于治疗多种疾病。话虽如此,每种疾病都伴随着一组独特的生理状况,每种脂质体产品的配制都必须考虑到这一点。脂质体有多种不同的靶向技术,可根据应用采用。被动技术(例如聚乙二醇化或增强渗透和保留效果)可以改善一般药代动力学,而主动技术(例如将靶向分子结合到脂质体表面)可以带来进一步的特异性。本综述旨在总结目前靶向脂质体在疾病治疗中的策略。
可充电锌空气电池(ZABS)被认为是在便携式电子,电动汽车和电化学能源存储技术中最有前途的候选者之一,因为它们的高能量密度,环境友好,低成本和出色的安全性。1特殊的高能量密度归因于图1 A所示的无限氧气量,而能量仅受金属Zn(820 a H kg -1)的限制。然而,实际使用Zn-Air电池会面临几个问题,包括实际容量低,能源效率差和循环稳定性不足。一方面,Zn电极在操作过程中引起了一系列挑战,包括钝化,树突和氢的演化,这导致了较低的Zn利用率和较差的循环稳定性。另一方面,空气电极上的催化剂对氧气的电化学反应的催化活性不足,这直接导致高电势和低能效率(〜60%,排放:〜1.2 V,电荷,电荷:〜2.0 V)。2因此,最近的研究强调了两个关键领域:Zn电极的复杂工程以及用于氧还原反应(ORR)和氧气演化反应(OER)的贵族无金属双功能催化剂的发展。3尽管在小型实验室电池系统中展示了令人鼓舞的结果,但将这些进步转移到广泛的实际应用中带来了重大挑战。
方法:这项横断面研究是较大的随机控制试验的一部分(ClinicalTrials.gov ID:NCT02597751),该试验涉及各种MRI扫描患有/没有DCD的儿童。本文着重于解剖学扫描,在30名DCD和12个TD儿童的儿童中进行皮质灰质体积的VBM。使用计算解剖工具盒-12和研究特定的脑模板进行了预处理和VBM数据分析。使用单向方差分析评估DCD和TD组之间的差异,从而控制了总颅内体积。回归分析检查了运动和/或注意力困难是否预测了灰质体积。我们使用了无阈值集群增强(5,000个排列),并将α水平设置为0.05。由于样本量较小,我们没有对多次比较纠正。
编辑质体基因组有助于了解质体基因的分子功能和设计作物所需的性状(Maliga,2022 年)。DddA 衍生的胞嘧啶碱基编辑器 (DdCBE) 能够在线粒体和质体基因组中进行 C 到 T 的编辑(Kang 等人,2021 年;Li 等人,2021 年;Mok 等人,2020 年;Nakazato 等人,2021 年)。最近,Cho 等人(2022 年)开发了 TALE 连接脱氨酶 (TALED),可以催化人类线粒体中的 A 到 G 碱基转化。利用 DddA 毒性的发现(Cho et al ., 2022 ),我们通过探索两种胞苷脱氨酶生成了用于质体编辑的新型单体 TALE 连接的 CBE:具有宽编辑窗口的人类 APOBEC3A 变体(hA3A-Y130F)(Ren et al ., 2021 )和基于 TadA 的改良胞苷脱氨酶(Lam et al ., 2023 ),分别生成 mTCBE 和 mTCBE-T。此外,我们还探索了一种可以同时脱氨胞嘧啶和腺嘌呤的 TadA 衍生脱氨酶(Lam et al ., 2023 ),以设计一种双碱基编辑器,名为 mTCABE-T。这些脱氨酶此前均未在植物或人类的细胞器基因组编辑中进行过研究。我们首先组装了针对三个水稻质体基因的左或右 TALE 阵列,这三个基因编码光系统 II 的核心成分( OsPsbA )、光系统 I ( OsPsaA )和 30S 核糖体亚基 RNA 成分( Os16SrRNA )。构建了三个单体质体碱基编辑器以及 DdCBE 和 Split-TALED 对照,用于在水稻中表达(图 1a )。我们通过靶向扩增子深度测序评估了再生水稻愈伤组织中的碱基编辑效率。令人印象深刻的是,mTCBE 诱导了高效的 C 到 T 转换,在 OsPsbA 、OsPsaA 和 Os16SrRNA 处的平均编辑频率分别为 42.3%、21.6% 和 19.4%(图 1b-d)。 DdCBE 催化 C 到 T 的转化,在这些目标位点的平均编辑效率分别为 7.8%、33.5% 和 34.2%(图 1b-d)。相比之下,mTCBE-T 的效率低于 mTCBE,C 到 T 的编辑效率为
crispr/cas9是一种最近发现的基因组编辑技术,它改变了科学家在研究基因功能方面的视力。cas9通过引导(g)RNA控制,该引导符合裂解以修饰相应基因的DNA。前列腺癌(PC)建模的发展不仅是针对识别前列腺细胞癌的信号传导途径的新型资源的,而且还为检查治疗的治疗剂来抵消这种类型的癌症的治疗方法创造了广泛的储藏。已经开发了几乎模仿人类前列腺癌的各种培养的针对前列腺癌的体细胞大鼠模型。纳米药物可以通过特定的传说增加生物利用度和结合来被动地靶向癌细胞,从而有助于系统性降低和提高疗效。本文重点介绍了脂质体负载的纳米米医学作为前列腺罐的潜在治疗方法,并阐明了伴有前列腺癌的CRISPR/CAS9变异。PC是通过乙基雌二醇在西大鼠模型中实验诱导的4周和SC。剂量为3,2'-二甲基-4-氨基苯基雌二醇(DAE)(50mg/kg),然后通过靶向脂质体涂层化合物进行处理,然后通过脂质体涂层化合物(例如脂质体去氨甲米松(DXM)),脂质体doxoru- doxoru- bicIn(dox)和四周(dox)(dox)(dox)(dox)turmical iperic(turmic of turmical(turmic of turmeric of)对其非靶向类似物地塞米松,阿霉素和姜黄的比较研究。3,2'-二甲基-4-氨基苯基雌二醇在5个月内引起西部大鼠的前列腺癌。 据报道,包括Malat1在内的前列腺细胞癌中对几个长的非编码RNA进行了管制。3,2'-二甲基-4-氨基苯基雌二醇在5个月内引起西部大鼠的前列腺癌。据报道,包括Malat1在内的前列腺细胞癌中对几个长的非编码RNA进行了管制。与这些脂质体化合物同时补充对前列腺癌的影响;通过前列腺特异性抗原(PSA),一氧化氮(NOX)和CRISPR/CAS9基因编辑研究了肿瘤标记。 另一方面,还研究了apoptotic生物标志物局灶性激酶(AKT-1),磷脂酰氨基烷醇激酶(PI3K)和糖原合酶激酶3(GSK-3)的基因表达,并还研究了这些结果,并通过HIS-HIS-拓扑核对学检查了这些结果。 脂质体负载的地塞米松;阿霉素和姜黄可以通过调节CRISPR/CAS9基因编辑和长期非编码基因MALAT1来视为前列腺癌的有希望的治疗剂。与这些脂质体化合物同时补充对前列腺癌的影响;通过前列腺特异性抗原(PSA),一氧化氮(NOX)和CRISPR/CAS9基因编辑研究了肿瘤标记。另一方面,还研究了apoptotic生物标志物局灶性激酶(AKT-1),磷脂酰氨基烷醇激酶(PI3K)和糖原合酶激酶3(GSK-3)的基因表达,并还研究了这些结果,并通过HIS-HIS-拓扑核对学检查了这些结果。脂质体负载的地塞米松;阿霉素和姜黄可以通过调节CRISPR/CAS9基因编辑和长期非编码基因MALAT1来视为前列腺癌的有希望的治疗剂。