在簇的调节间隔短的短质体重复序列(CRISPR)/CRISPR相关蛋白(CAS)系统中,原生质体不仅有助于快速验证各种RNA引导的内核酶的诱变效率,而且还可以是平台的dna-fiee。迄今为止,后一种方法已应用于许多农作物,尤其是那些具有复杂基因组的农作物,少年时期,杂种趋势和/或自我不相容性。原生质体再生是无DNA基因编辑的关键步骤。在本报告中,我们回顾了原生质体技术的历史和一些未来前景,包括原生质体转染,转化,融合,再生以及基于CRISPR/CAS的繁殖中的当前原生质体应用。
质体,特异性细胞器分化为几种类型,包括在细胞分化和响应各种胁迫的过程中,包括光合作用的表现性叶绿体和淀粉蓄积的淀粉样品。这些特定类型的质体与名为Proplastids的原始类型的质体不同,这些质体通常在分生组织中在种子细胞或干细胞中发展(图1)。获得高塑料的质体将是植物在世界各地蓬勃发展和多样化的关键事件。然而,质体可塑性的进化史和分子机制在很大程度上尚不清楚。在这项研究中,我们旨在了解使塑料能够进行广泛分化的中心机制,并揭示植物如何调节开发过程中的机制和响应不断变化的环境。
新育种技术(NBT)在Vitis Vinifera中的应用非常需要引入有价值的特征,同时保留了精英品种的基因型。然而,由于外源性DNA的稳定整合,欧洲和其他国家 /地区的公众舆论和法律法规对NBT的广泛应用被公众舆论和法律法规所接受,这会导致可能受到嵌合的转基因植物。一种基于单细胞的方法,再加上CRISPR/CAS编辑机械的无DNA转染,构成了克服这些问题并保持整个生物体中原始遗传化妆的强大工具。我们在这里描述了一种成功的基于单细胞的无DNA无DNA方法,以获取编辑的葡萄植物,并从两个表格葡萄藤品种的胚胎愈伤组织中分离出来的原生质体(V. vinifera cv。深红色无籽和sugraone)。分别将重生的非晶体植物编辑为单个或双突变体,分别在腐烂的和粉状的米尔德易感基因,VVIDMR6和VVIMLO6上。
在这项研究中,我们生成并比较了三个针对马铃薯(卵巢结核)制成的胞苷碱基编辑器(CBE),该量子量其最多赋予了原生质体池中所有等位基因的43%C-T转换。早些时候,基因编辑的马铃薯植物是通过聚乙烯二烯介导的CRISPR/CAS9转化原生质体的转化而成功产生的。在一项研究中,通过用内源性马铃薯ST U6启动子替换U6-1启动子的标准拟南芥,从而获得了3 - 4倍的编辑效率。在这里,我们使用了这种优化的构建体(SP Cas9/ st u6-1 :: grna1,Target GRNA序列GGTC 4 C 5 TTGGAGC 12 AAAAAC 17 TGG)用于生成CBES量身定制的马铃薯,并测试了用于C-T碱基编辑的CBES在Granule-Bounchase-bound starch synthase 1 Gene中的C-T碱基编辑。首先,将链球菌CAS9转化为(D10A)Nickase(NCAS9)。接下来,来自人hapobec3a(A3a),大鼠(EVO_RAPOBEC1)(RA1)或Sea Lamprey(EVO_ PM CDA1)(CDA1)的三种胞质脱氨酶之一(cda1)与NCAS9和A尿素 - DNA Glycosylase融合了C-Encas9(CDA1)与每种模块化的链接。CBE的总体高度有效,A3A具有最佳的总体基础编辑活动,平均为34.5%,34.5%和27%的C-T转换为C4,C5和C12,而CDA1的平均基础编辑活动的平均基础编辑活性为34.5%,34%,34.5%,14.25%C4和C4,C4和C4,C4和C4,C4和C4,C4。ra1在C4和C5时表现出平均基础编辑活性为18.75%,19%的基础编辑活动,是唯一在C12时显示C-TO-T转换的基本编辑器。
参考文献 Chase MW,Soltis DE,Olmstead RG,Morgan D.,Les DH,Mishler BD,Duvall M. R. , 价格 R. A. , Hills HG , Qiu Y.-L . , Kron KA , Rettig J. H.,Conti E.,Palmer J. D 円 Manhart J. R. , Sytsma K. J. ,迈克尔斯 H. J. , 克莱斯 W. J. , Karol KG , Clark WD , Hedroen M. , Gaut BS , Jansen R. K. , 金K.-J. , 温皮 CF , 史密斯 J 。 F.,Fumier GR,Strauss SH,Xiang Q.-Y. , Plunkett GM , Soltis PS , Swensen S. , Williams SE , Gadek P. A . , 奎因 C.J. , Eguiarte LE, Golenberg E., Leam GH Jr., Graham SW, Barrett SC, Dayanandan S. 和 Albert VA 1993. 种子植物的系统发育:质体基因 rbc 的核苷酸序列分析 L. Ann.密苏里机器人。警卫。 80: 528-580。道尔 J. J。和 Doyle J. L. 1987.一种用于少量新鲜叶组织的快速 DNA 分离程序。植物化学。公牛 l。 19: 11-15。/平塚 J. , Shimada H. , Whittier R. , lshibashi T. , Sakamoto M. , Mori M. , Kondo C. , Ho 吋 i Y. , Hirai A. , Shinozaki K. 和 Sugiura M. 1989. 水稻(Oryza sativa)叶绿体基因组的完整核苷酸序列:不同 tRNA 基因之间的分子间重组导致谷物进化过程中的 m 吋 2 或质体 DNA 倒位。莫尔。基因 t 将军。 217: 185-194。 Johnson LA 和 Soltis DE 1994. 虎耳草科植物的 matK DNA 序列和系统发育重建。字符串系 统。博特。 19:143-156。 Neuhaus H. 和 Link G. 1987.芥菜的叶绿体 tRNA Lys (UUU) 基因。当前。基因。 11:251-257。 Steele KP 和 Vilgalys R. 1994. 利用质体基因 mat K 的核苷酸序列对花荬科进行系统发育分析。博特。 19:126-142。 Sugita M. , Shinozaki K. 和 Sugiura M. 1985. 烟草叶绿体 tRNA Lys(UUU)基因含有一个2.5千碱基对的内含子:一个开放阅读框和内含子内保守的边界序列。 Proc. Na. l.学院Sci.USA 82: 3557-3561.
摘要 线粒体疾病是由核或线粒体 DNA (mtDNA) 突变引起的,目前的治疗选择有限。对于 mtDNA 突变,降低突变型与野生型 mtDNA 比率(异质体转移)是一种有希望的治疗选择,尽管目前的方法面临重大挑战。先前的研究表明,严重的线粒体功能障碍会触发适应性核表观遗传反应,其特征是 DNA 甲基化发生变化,当线粒体损伤不明显时,这种反应不会发生或不那么重要。基于此,我们假设针对核 DNA 甲基化可以选择性地损害具有高水平突变 mtDNA 的细胞,有利于具有较低突变负荷的细胞,从而减少整体异质体。使用在不同异质体水平下含有两种致病 mtDNA 突变(m.13513G>A 和 m.8344A>G)的细胞杂种模型,我们发现突变类型和负荷都会明显影响核 DNA 甲基化组。我们发现这种甲基化模式对于高异质体细胞的存活至关重要,但对于低异质体细胞则不然。因此,通过使用 FDA 批准的 DNA 甲基化抑制剂破坏这种表观遗传编程,我们成功选择性地影响高异质体细胞杂种并减少异质体。这些发现在培养细胞和体内异种移植模型中均得到验证。我们的研究揭示了核 DNA 甲基化在调节线粒体异质体背景下的细胞存活方面以前未被认识到的作用。这一见解不仅加深了我们对线粒体-核相互作用的理解,而且还引入了表观遗传调节作为线粒体疾病的一种可能治疗途径。引言
C-SL、Y-CL、JS 和 M-CS 构思并设计了实验。C-TH 和 Y-61 HY 进行了 CRISPR-Cas9 实验。C-TH、Y-HY、Q-WC、J-JY 和 F-HW 62 进行了原生质体再生、细胞生物学、分子生物学和靶向 63 诱变实验。SL 进行了 SpCas9 纯化。Y-LW 进行了 WGS 64 文库制备和 qPCR 分析。P-XZ 和 Y-CL 进行了生物信息学 65 分析。Y-HC、C-TH、C-SL、Q-WC 和 F-HW 进行了病毒相关分析。C-66 TH 进行了细胞生物学。C-TH 和 S-IL 进行了嫁接。JS、M-CS、Y-CL 和 67 C-SL 在所有合著者的帮助下撰写了手稿。所有作者都阅读并 68 批准了最终手稿。69
塑料材料,包括微塑料,即使在欧洲阿尔卑斯山等偏远和寒冷的环境中也积聚在所有类型的生态系统中。这种污染对环境和人类构成了风险,需要解决。使用大约3,000 m a.s.l.的东部瑞士阿尔卑斯山收集的土壤的shot弹枪DNA宏基因组学,我们确定了可能降解塑料的基因及其蛋白质。我们通过差异丰度分析筛选了质体和大块土壤的宏基因组,并与专门针对推定的塑料降解基因的特定数据库进行了基于相似性的筛选,并选择了具有信号肽的高概率的基因,用于信号肽的细胞外导出和高信任的功能率。此过程导致了9个候选基因的最终列表。预测蛋白的长度在425至845个氨基酸之间,预测产生这些蛋白质的属主要属于Caballeronia和Bradyrhizobium。我们使用异源表达进行了功能验证,然后进行上清液的酶测定。测试的九种蛋白质中的五种显示出我们使用酯酶测定时的活性显着增加,而从候选基因(一种水解酶型酯酶)中的五种蛋白质中的一种显然具有最高的活性,高于双倍以上。,我们仅用来自酯化酯酶测定中五个候选基因的蛋白质对塑料类型的塑料降解和生态®进行荧光测定,但是像阴性对照一样,这些蛋白质并未显示出任何偶尔的活性。相比之下,阳性对照的活性(包含文献中已知的Pla降解基因插入物)是阴性对照的20倍以上。这些发现表明,在计算机筛选中进行功能验证,适合查找新的降解酶。尽管我们只发现了一种新的酯酶酶,但我们的方法有可能应用于任何类型的土壤和各种生态系统中的塑料,以快速有效地寻找新的塑料降解酶。
(Gu等人,2020)Modelfinder模型推荐的模型用于基于TTCDS基因串联的数据矩阵的系统发育分析。getorganelle管道用于组装清洁测序中的质体,读取用于验证组件的准确性和注释质体质体基因组注释者(PGA)的精确性,该质子使用了plastome
摘要 关键信息 我们建立了一种基于核糖核蛋白的CRISPR/Cas9无DNA基因组编辑方法在栽培番茄中应用,并获得了高突变率的转染原生质体再生突变植株。 摘要 近年来,基因组编辑作为一种研究和育种方法的应用为许多作物的性状改良提供了许多可能性。在栽培番茄(Solanum lycopersicum)中,迄今为止只建立了携带CRISPR/Cas9试剂的稳定的农杆菌介导转化方法。转染原生质体芽再生是基于核糖核蛋白的CRISPR/Cas9无DNA基因组编辑方法在栽培番茄中应用的主要瓶颈。在本研究中,我们报道了利用CRISPR/Cas9技术实现栽培番茄的无转基因育种方法,包括优化原生质体分离和克服转染原生质体芽再生障碍。结果表明,含0.1 mg/L IAA和0.75 mg/L玉米素的芽再生培养基为最佳激素组合,再生率可达21.3%。原生质体分离转染4个月后,成功获得高突变率的再生植株。获得的110株再生M 0 植株中,有35株(31.8%)同时发生SP和SP5G基因突变,SP或SP5G基因中至少一个等位基因的编辑效率高达60%。