摘要:飞机维护已被确定为航空业许多高风险领域的一个关键关注点;仍然是商业航空运输业中许多事故和严重事件的偶然/促成因素。本研究的目的是回顾和分析 2003 年至 2017 年期间发生的与飞机维护相关的事故和严重事件,以更好地了解因果因素和促成因素。为此,编制了与维护相关的事故和严重事件数据集,然后通过主题分析方法进行定性分析。使用 NVivo 软件对这些事件进行编码可以开发分类法 MxFACS。然后由主题专家评估编码输出,并确定评分者间一致性值以证明研究过程的严谨性。随后,根据事件与已知事故类别(如失控、跑道偏离)的关系对事件进行了评估。发现最常见的维护事件后果是跑道偏离和空中返航,第二级类别与发动机和起落架系统故障有关。最大的维护因素问题是“维护程序不足”和“检查未发现缺陷”。在死亡人数方面,“碰撞事件”是最突出的后果,“发动机相关事件”是最重要的事件,“维护程序不足”是最令人担忧的维护因素。该研究的结果可以与现有的风险分析方法结合使用,并使利益相关者能够开发通用或定制的领结。这可能识别系统中现有的障碍以及弱点,从而能够在组织和行业范围内制定缓解策略。
患者受访者的个人资料:278个早期,乳腺癌患者对英语和法语的调查做出了反应。在此提交中,CBCN专门利用了52名加拿大,早期,她对我们调查做出反应的2个阳性乳腺癌患者提供的数据。所有人都被确定为女性,主要是(29)将英语说为第一语言,有7个讲法语作为第一语言,有4位受访者选择其他语言作为其第一语言(在广东话,波兰语和塞尔博 - 克罗伊亚族人之间分配),有12位受访者未经宣称。大多数受访者来自安大略省(12)和萨斯喀彻温省(6),魁北克4,新斯科舍省4岁,不列颠哥伦比亚省的4岁,来自曼尼托巴省的2岁,来自曼尼托巴省的2岁,新不伦瑞克省的2名,来自纽芬兰和拉布拉多的2名,来自艾尔伯塔省的2,来自艾伯塔省的2,来自爱德华王子岛。其余部分没有指定其居住省。大多数受访者(21)在诊断出40-49岁之间,有15名受访者在50-59岁之间,有10名受访者在30-39岁之间,30岁的年龄在60-69岁之间,其余的则未公开。大多数受访者处于关系中(34),而五名受访者则称自己为单身,其余的没有指定他们的关系状态。大多数患者(33)有孩子,大多数患者(17)患有20岁以上的儿童,有10岁的儿童在13-19岁之间,有5岁的儿童2-5岁,有4岁的儿童在6-12岁之间,4岁的儿童在1岁以下。印刷资料:对当前的研究和灰色文献进行了审查,以识别许多患有乳腺癌的妇女中通常共享的问题和经验。3。关键的线人访谈:电话访谈于4月和2021年5月进行了加拿大早期阶段,患有高危乳腺癌,HER2阳性乳腺癌的乳腺癌患者,并在接受审查的治疗方面有直接经验。疾病经验
对长期意识障碍 (pDOC) 患者提供准确的预后仍然是一个临床挑战。大型横断面研究已经证明了使用高密度脑电图 (hdEEG) 测量的功能性大脑网络的诊断和预后价值。尽管如此,这些神经测量的预后价值尚未通过纵向随访进行评估。我们通过评估 hdEEG 预测长期行为结果的效用来解决这一差距,采用从一组患者中收集的纵向数据,这些患者在两年的时间内通过床边的静息 hdEEG 和昏迷恢复量表修订版 (CRS-R) 进行系统评估。我们使用典型相关分析将临床(包括 CRS-R 评分与人口统计变量相结合)和 hdEEG 变量相互关联。该分析显示,患者的年龄、hdEEG θ 波段功率和 alpha 波段连接对 hdEEG 与临床变量之间的关系贡献最为显著。此外,我们发现,评估时记录的 hdEEG 测量结果增强了临床测量结果,有助于预测下次评估时的 CRS-R 分数。此外,hdEEG 变化率不仅可以预测 CRS-R 分数的后续变化,而且在预测能力方面也优于临床测量结果。总之,这些发现表明,功能性大脑网络的改善先于 pDOC 的行为意识变化。我们在此证明,在专科护理院进行的床边 hdEEG 评估是可行的,具有临床实用性,并且可以补充临床知识和系统性行为评估,以指导预后和护理。
背景:SAMHD1 通过切割三磷酸化形式介导对抗癌核苷类似物的耐药性,包括常用于治疗白血病的阿糖胞苷、地西他滨和奈拉滨。因此,SAMHD1 抑制剂是使白血病细胞对基于核苷类似物的疗法敏感的有希望的候选药物。在这里,我们在 SAMHD1 的背景下研究了胞嘧啶类似物 CNDAC 的影响,该物质已被提议作为 SAMHD1 抑制剂。方法:在 13 种急性髓系白血病 (AML) 细胞系、26 种急性淋巴细胞白血病 (ALL) 细胞系、10 种适应各种抗白血病药物的 AML 亚系、24 种单细胞衍生的克隆 AML 亚系和来自 24 名 AML 患者的原发性白血病母细胞中测试了 CNDAC。此外,还建立了 24 个 AML 细胞系 HL-60 和 PL-21 的 CNDAC 抗性亚系。使用 CRISPR/Cas9 破坏 SAMHD1 基因,使用 RNAi 和病毒 Vpx 蛋白耗尽 SAMHD1。通过慢病毒转导实现强制 DCK 表达。用甲基化敏感的 HpaII 内切酶处理基因组 DNA 后,通过 PCR 确定 SAMHD1 启动子甲基化。通过 LC-MS/MS 测定核苷(类似物)三磷酸盐水平。通过酶促测定和结晶分析了 CNDAC 与 SAMHD1 的相互作用。结果:尽管胞嘧啶类似物 CNDAC 预计会抑制 SAMHD1,但 SAMHD1 介导白血病细胞中的内在 CNDAC 抗性。因此,SAMHD1 耗竭会增加 CNDAC 三磷酸盐 (CNDAC-TP) 水平和 CNDAC 毒性。酶促分析和结晶研究证实,CNDAC-TP 是 SAMHD1 底物。在 24 个适应 CNDAC 的急性髓系白血病 (AML) 亚系中,抗药性是由 DCK(催化初始核苷磷酸化)损失引起的。适应 CNDAC 的亚系仅对其他 DCK 底物(例如阿糖胞苷、地西他滨)表现出交叉抗药性。适应不受 DCK 或 SAMHD1 影响的药物的细胞系仍然对 CNDA C 敏感。在适应阿糖胞苷的 AML 细胞中,SAMHD1 增加和 DCK 水平降低导致阿糖胞苷和 CNDAC 抗药性。
背景:儿童呼吸系统疾病是一个必须解决的问题,因为它对儿童的长期发育和健康有重大影响。肺结核和肺炎是儿童常常患的疾病。出现的症状之一是呼吸急促。儿童呼吸困难可能是由于分泌物积聚、无法自主排出分泌物以及咳嗽反射弱引起的。减轻呼吸困难的一种疗法是薄荷芳香疗法,薄荷中的成分会放松支气管,使呼吸更加顺畅。目的:描述在儿童气道清除功能不全的护理及薄荷芳香疗法的应用方面实施护理实践的效果。方法:本文采用的方法是定性描述,采用案例研究方法并回顾有关薄荷芳香疗法的期刊。结果:根据对3例管理患者的评估结果,3例管理患者均出现呼吸困难、无法咳嗽和发烧等症状。提出的主要护理问题是气道清除无效的主要护理问题。提供的干预措施包括通过监测呼吸模式进行气道管理、监测痰液产生以及协作提供药物和非药物治疗。提供的非药物治疗方法是进行薄荷芳香疗法,持续 3 天,每次给药时间为 15 分钟。结论:对3例患者实施薄荷芳香疗法,可以减少呼吸频率,降低辅助呼吸肌,减少痰液的产生。关键词:儿童、芳香疗法、薄荷、肺炎、肺结核 参考书目:34 (2015-2024)
航空业正面临越来越大的压力,需要通过长期战略来减少排放,以满足不断增长的飞行乘客数量。目前运行的飞机通常是在设计时将机身与推进系统分开考虑的。这样一来,传统的航空发动机架构在推进效率方面已接近极限,而技术进步带来的收益却越来越少。一种有前途的替代架构可以提高下一代商用飞机的整体性能,它依赖于边界层吸入 (BLI)。这项技术将机身与战略性定位的推进系统在空气动力学上耦合,以有目的地吸入机身的边界层流。尽管如此,对于 BLI 效益的解释和量化仍缺乏共识。这主要是因为传统的性能核算方法在强气动耦合的情况下失效。随后,定义适当的性能指标以提供一致测量和潜在效益比较是一项重大挑战。本评论研究了用于评估 BLI 性能的各种会计方法和指标。这些内容在数值和实验模型的背景下进行了讨论和批评。从数值上讲,几何、空气动力学和推进模型按保真度顺序排序,同时使用大量方法进行流动特征识别,从而实现对 BLI 的现象学理解。然后特别关注具有不同设置、方法和相关限制和不确定性的实验 BLI 模型。最后,参考其相关的设计探索和优化研究,对众多非常规 BLI 飞机概念进行了分类、比较和批评。
○骆驼集团Xiangyang Battery Co.,Ltd. Ltd.○骆驼集团东北电池有限公司。○锂离子○电池骆驼组新能源电池有限公司
通过机器学习生成设计一直是计算机辅助设计领域的一项持续挑战。最近,深度学习方法已被用于随机生成时尚、家具和产品设计中的图像。然而,这种深度生成方法通常需要大量的训练图像,并且在设计过程中没有考虑到人为因素。在这项工作中,我们寻求一种方法,通过脑电图测量 (EEG) 指示的大脑活动将人类认知因素纳入生成过程。我们提出了一种受神经科学启发的机器学习设计方法,其中使用 EEG 来捕获首选的设计特征。此类信号用作生成对抗网络 (GAN) 中的条件。首先,我们使用循环神经网络 (LSTM - 长短期记忆) 作为编码器,从原始 EEG 信号中提取 EEG 特征;这些数据是从受试者观看 ImageNet 中的几类图像时记录下来的。其次,我们训练一个以编码的 EEG 特征为条件的 GAN 模型来生成设计图像。第三,我们使用该模型从受试者的 EEG 测量大脑活动生成设计图像。
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。
