○骆驼集团Xiangyang Battery Co.,Ltd. Ltd.○骆驼集团东北电池有限公司。○锂离子○电池骆驼组新能源电池有限公司
技术规格 构造:双座 / 并排 / 三轮起落架 长度:7.26 米 (23,82 英尺) 翼展:8.78 米 (28,80 英尺) 高度:2.23 米 (7,31 英尺) 最大起飞重量 (MTOW):1 005 千克 (2 216 磅) 安全:全套救援降落伞、防爆燃油箱 发动机:莱康明 IO-360-M1A (180 马力 @ 2 700 rpm) - INTEGRAL S - VFR 和 IFR 发动机:莱康明 AEIO-360-M1A (180 马力 @ 2 700 rpm) - INTEGRAL S - 特技飞行 螺旋桨:恒速 载荷系数:+6 / -4 G (@960 千克 / Cat A2) 载荷系数:+5 / -3 G (@1005 kg / Cat BC) 航程:926 公里 (500 海里) 燃油容量:159 升 (42 加仑) 行李:30 公斤
* 通讯作者,电子邮箱:wuz2015@mail.xjtu.edu.cn (Z. Wu)。摘要:解决传统能源危机和环境问题的迫切需要加速能源结构转型。然而,可再生能源的多变性对满足复杂的实际能源需求提出了挑战。为了解决这个问题,建设一个多功能的大型固定式储能系统被认为是一种有效的解决方案。本文批判性地研究了电池和氢混合储能系统。这两种技术都面临着阻碍它们完全满足未来储能需求的局限性,例如在有限的空间内实现大容量存储、快速响应的频繁存储以及无损耗的连续存储。电池具有快速响应(<1 s)和高效率(> 90%)的特点,在频繁的短时间储能方面表现出色。然而,自放电率(> 1%)和容量损失(~20%)等限制限制了它们在长时储能中的应用。氢能作为一种潜在的能源载体,能量密度高、状态稳定、损耗低,适合大规模、长时储能。然而,由于其储能效率低(~50%),不适合频繁储能。正在进行的研究表明,电池和氢混合储能系统可以结合两种技术的优势,满足日益增长的大规模、长时储能需求。为了评估它们的应用潜力,本文使用提出的关键性能指标对这两种储能技术的研究现状进行了详细的分析。此外,从多个角度概述了电池和氢混合储能系统面向应用的未来方向和挑战,为先进储能系统的发展提供指导。亮点:⚫回顾了电池和氢混合储能系统的面向应用的储能系统。⚫提出了一系列先进储能系统的关键性能指标。 ⚫ 在可再生能源存储情况下,电池和氢混合储能系统(0.626 美元/千瓦时)比电池储能系统(2.68 美元/千瓦时)更具成本竞争力。⚫ 总结了多功能大型固定式电池和氢混合储能系统的挑战。关键词:混合储能系统、电池、氢、固定式、大型、多功能。
发件人:海军记录更正委员会主席 收件人:海军部长 主题:审查前美国海军成员 XXX-XX- 的海军记录 参考:(a) 10 USC § 1552 附件:(1) DD 表格 149 及附件 1. 根据参考 (a) 的规定,主体,以下称为请愿人,向海军记录更正委员会(委员会)提交了附件 (1),请求更正其退伍证书中的名字。附件 (1) 适用。 2. 委员会由 、 和 组成,于 2023 年 1 月 27 日审查了请愿人的错误和不公正指控,并根据其规定,决定应采取以下指示的纠正措施。委员会审议的文件材料包括申请人的申请书及其提交的所有支持材料、申请人海军记录的相关部分、适用的法规、规章和政策,包括参考资料。3. 委员会审查了与申请人指控的错误和不公正有关的所有记录事实,发现如下:a. 在向委员会提出申请之前,申请人已用尽海军部现行法律和法规规定的所有行政补救措施。尽管申请人的申请没有及时提交,但委员会认为,为了公平起见,应放弃诉讼时效并根据案情进行审议。
摘要:飞机维护已被确定为航空业许多高风险领域的一个关键关注点;仍然是商业航空运输业中许多事故和严重事件的偶然/促成因素。本研究的目的是回顾和分析 2003 年至 2017 年期间发生的与飞机维护相关的事故和严重事件,以更好地了解因果因素和促成因素。为此,编制了与维护相关的事故和严重事件数据集,然后通过主题分析方法进行定性分析。使用 NVivo 软件对这些事件进行编码可以开发分类法 MxFACS。然后由主题专家评估编码输出,并确定评分者间一致性值以证明研究过程的严谨性。随后,根据事件与已知事故类别(如失控、跑道偏离)的关系对事件进行了评估。发现最常见的维护事件后果是跑道偏离和空中返航,第二级类别与发动机和起落架系统故障有关。最大的维护因素问题是“维护程序不足”和“检查未发现缺陷”。在死亡人数方面,“碰撞事件”是最突出的后果,“发动机相关事件”是最重要的事件,“维护程序不足”是最令人担忧的维护因素。该研究的结果可以与现有的风险分析方法结合使用,并使利益相关者能够开发通用或定制的领结。这可能识别系统中现有的障碍以及弱点,从而能够在组织和行业范围内制定缓解策略。
航空业正面临越来越大的压力,需要通过长期战略来减少排放,以满足不断增长的飞行乘客数量。目前运行的飞机通常是在设计时将机身与推进系统分开考虑的。这样一来,传统的航空发动机架构在推进效率方面已接近极限,而技术进步带来的收益却越来越少。一种有前途的替代架构可以提高下一代商用飞机的整体性能,它依赖于边界层吸入 (BLI)。这项技术将机身与战略性定位的推进系统在空气动力学上耦合,以有目的地吸入机身的边界层流。尽管如此,对于 BLI 效益的解释和量化仍缺乏共识。这主要是因为传统的性能核算方法在强气动耦合的情况下失效。随后,定义适当的性能指标以提供一致测量和潜在效益比较是一项重大挑战。本评论研究了用于评估 BLI 性能的各种会计方法和指标。这些内容在数值和实验模型的背景下进行了讨论和批评。从数值上讲,几何、空气动力学和推进模型按保真度顺序排序,同时使用大量方法进行流动特征识别,从而实现对 BLI 的现象学理解。然后特别关注具有不同设置、方法和相关限制和不确定性的实验 BLI 模型。最后,参考其相关的设计探索和优化研究,对众多非常规 BLI 飞机概念进行了分类、比较和批评。
在1970年代的两次石油危机之后,Nedo于1980年成立,以促进新能源技术的发展和引入。从那以后,内多(Nedo)已成为日本最大的公共研发管理组织之一,它与政府合作实施经济和工业政策。以这种能力,Nedo开展了技术开发和演示活动,以通过整合行业,学术界和政府的综合努力来执行解决能源和全球环境问题的两个基本任务,并提高日本行业的技术能力。为了进一步推进其活动,Nedo从中期和长期的角度制定了技术开发策略,并根据其策略计划并提出了新项目。此外,为了创造更大的创新,已经引入了新的项目经理系统,以提高管理能力,并增强Nedo作为发现技术种子并促进创新技术商业化的中介机构的作用。