近年来,氧化石墨烯纳米片 (GO) 被广泛研究用作水中多种有机分子和重金属离子的吸附剂。1–3 与其他碳基纳米材料(如标准工业吸附剂活性炭)相比,丰富的表面化学基团加上较大的吸附表面积,使其对几类污染物(包括新兴污染物)的吸附动力学和效率更快。4 这些污染物因其在水体中的持久性、流动性以及健康和环境毒性而备受关注。5–7 GO 纳米片的羧基和羰基在有机分子的吸附效率中起着重要作用,因为它们能够形成氢键和金属离子络合。2,3 此外,可以利用此类表面基团的化学改性来提高选择性吸附能力。例如,据报道,聚乙烯亚胺 (PEI) 改性是一种成功的策略,可以利用 p 堆积、络合和
CRISPR/Cas9 是一种流行的基因组编辑技术。尽管被广泛使用,但人们对这种原核系统在人类中的行为知之甚少。真核 Cas9 表达的一个不良后果是脱靶 DNA 结合导致诱变。更安全地在临床上实施 CRISPR/Cas9 需要更好地了解控制 Cas9 在人类中行为的调节机制。在这里,我们报告了我们发现的 Cas9 SUMO 化和泛素化,这是首次描述的这种酶的翻译后修饰。我们发现 Cas9 上的主要 SUMO2/3 结合位点是 K848,这是 HNH 核酸酶结构域中一个关键的带正电荷的残基,已知它与靶 DNA 相互作用并导致脱靶 DNA 结合。我们的结果表明,Cas9 泛素化通过蛋白酶体降解导致稳定性降低。通过将 K848 转化为精氨酸或药理学抑制细胞的 SUMO 化来阻止 Cas9 SUMO 化可增强酶的周转率并降低向导 RNA 指导的 DNA 结合效力,这表明该位点的 SUMO 化可调节 Cas9 的稳定性和 DNA 结合。需要进行更多研究才能充分了解这些修改对 Cas9 特异性的影响。
对照载体转染的 LNCaP-ctl 细胞(图 1C)。为了测试 KDM4B 在 PCa 进展中的临床相关性,我们对接受雄激素剥夺疗法的局部或转移性激素敏感性 PCa(AJCC III 期和 IV 期)患者的前列腺活检组织样本进行了 KDM4B 表达染色。在肿瘤样本中观察到显著的 KDM4B 染色,而在正常组织中发现的染色很少(图 1D)。KDM4B 表达较高的患者的存活率明显较短(图 1E)。我们在体内测试了 KDM4B 过表达的影响。在注射 LNCaP-4B 细胞的小鼠中观察到 30% 的肿瘤形成率,而注射对照 LNCaP-ctl 细胞的小鼠没有肿瘤(图 1F)。LNCaP-4B 细胞未能在阉割动物中形成肿瘤(未显示数据)。
摘要 简介:由于药物的副作用,纳米级药物递送系统的发展带来了药物治疗的显著改善,因为药物的药代动力学发生了变化,毒性降低,药物的半衰期增加。本研究旨在合成载有他莫昔芬 (TMX) 的 L-赖氨酸包覆磁性氧化铁纳米粒子作为纳米载体,以研究其对 MCF-7 癌细胞的细胞毒性和抗癌特性。方法:合成磁性 Fe 3 O 4 纳米粒子并用 L-赖氨酸 (F-Lys NPs) 包覆。然后,将 TMX 负载到这些 NP 上。通过 X 射线衍射 (XRD)、傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、动态光散射 (DLS)、差示扫描量热法 (DSC)、振动样品磁强计 (VSM) 和热重分析 (TGA) 评估合成纳米粒子 (F-Lys-TMX NPs) 的特性。在 pH 5.8 和 pH 7.4 下分析药物释放。将 MCF-7 细胞暴露于 F-Lys-TMX NPs、F-Lys NPs 和 TMX 24、48 和 72 小时。为了评估设计的纳米粒子的细胞毒潜力,进行了 MTT 和细胞凋亡测定、实时 PCR 和细胞周期分析。结果:F-Lys-TMX NPs 具有球形形态,尺寸范围为 9 至 30 nm。通过增加纳米粒子浓度和处理时间,与 TMX 相比,在 F-Lys-TMX NPs 处理的细胞中观察到更多的细胞增殖抑制和凋亡诱导。ERBB2、细胞周期蛋白 D1 和细胞周期蛋白 E 基因的表达水平下调,而 caspase-3 和 caspase-9 基因的表达水平上调。药物释放研究表明,纳米粒子的释放缓慢且受控,受 pH 依赖。细胞周期分析表明,F-Lys-TMX NPs 可以将细胞停滞在 G0/G1 期。结论:研究结果表明,与 TMX 相比,F-Lys-TMX NPs 更有效,并且具有抑制细胞增殖和诱导凋亡的潜力。因此,F-Lys-TMX NPs 可被视为针对 MCF-7 乳腺癌细胞的抗癌剂。
简介 在过去十年中,纳米材料科学中的药物知识得到了快速发展。医学纳米技术是纳米技术在医学中的应用,涉及药物输送系统、疾病检测方法、新产品(如纳米机器人和人造组织)的引入等问题,其目的是通过发展医疗保健领域的深思熟虑和重大变革来提高生活质量。纳米科学在纳米医学中的应用,更具体地说是在药物科学领域的应用,用于药物纳米载体在疾病管理和癌症治疗中的创新,将迅速普及。1-5 在这一领域,已经通过探索多种载体和方法探索了靶向药物输送以用于名义癌症治疗。6-8
摘要:由于表面暴露的赖氨酸的固有反应性低且在整个蛋白质组中普遍存在,因此对其进行靶向共价修饰具有挑战性。优化可逆结合抑制剂 ( k inact ) 共价键形成速率的策略通常涉及提高亲电试剂的反应性,这会增加离靶修饰的风险。在这里,我们采用了一种替代方法来提高赖氨酸靶向共价 Hsp90 抑制剂的 k inact ,而不依赖于可逆结合亲电性 ( K i ) 或固有亲电性。从非共价配体开始,我们附加了一个手性、构象受限的连接体,它使芳基磺酰氟与 Hsp90 表面的 Lys58 快速且对映选择性地发生反应。共价和非共价配体/Hsp90 复合物的生化实验和高分辨率晶体结构提供了有关配体构象在观察到的对映选择性中的作用的机制见解。最后,我们展示了细胞 Hsp90 的选择性共价靶向,尽管共价配体/Hsp90 复合物同时降解,但仍会导致热休克反应延长。我们的工作突出了设计配体构象约束的潜力,可以大大加速蛋白质靶标表面远端、亲核性较差的赖氨酸的共价修饰。■ 简介共价抑制剂作为药物、细胞生物学工具和化学蛋白质组学探针具有广泛的用途。不可逆的共价修饰导致药物-靶标停留时间与靶蛋白的寿命相匹配,通常与药物清除率无关。 1、2 此外,共价抑制剂可以通过与配体结合位点内或附近的非保守亲核氨基酸反应来区分密切相关的旁系同源物。3 − 8 目标亲核试剂的选择性修饰由两步反应机制决定,其中配体的可逆结合先于共价修饰。可逆结合亲和力和最初形成的非共价复合物内共价键形成的速率 ( k inact ) 都会影响共价抑制剂的效力。9 增加 k inact 的一个明显方法是增强亲电试剂的固有反应性。这种方法的缺点是它增加了发生不良的脱靶反应的可能性。因此,共价抑制剂的优化主要依赖于最大化非共价识别元素的可逆结合亲和力。 10,11 迄今为止,快速作用、高选择性共价配体的设计主要集中在半胱氨酸上,部分原因是其高内在反应性允许使用相对不活泼的亲电试剂(例如丙烯酰胺)。12 − 14 然而,半胱氨酸是蛋白质组中最不常见的氨基酸之一,许多配体结合位点缺乏近端半胱氨酸。