摘要背景:来自哈茨木霉的 L-赖氨酸-α-氧化酶是一种很有前途的抗癌、抗真菌和抗菌剂。深入探索其物理化学性质和可能的应用方式需要足够数量的蛋白质,而这又取决于微生物生产者的良好培养技术、酶软分离和纯化以及储存技术。方法:提出了一种改进的酶分离和纯化方法。采用特定的柱吸附剂组合,并采用氯化钠梯度洗脱来提高酶的产量。测试了短杆菌属代谢产物 (MP) 以及 Ulocladium sp. 和木霉属真菌代谢物的诱导影响。酶活性测定基于在过氧化物酶反应与 L-赖氨酸-α-氧化酶反应相结合的情况下检测氧化的二甲基联苯胺。还探索了一些酶特性。结果:改进后的分离纯化工艺使酶得率达到79%左右。所有短杆菌属菌株均能有效增强L-赖氨酸-α-氧化酶活性及其伴随活性。诱导的酶似乎特异性较低但热稳定性更高。讨论了改性酶的可能应用范围。磷酸盐缓冲液(pH=5.6)似乎是长期保存酶的最佳溶液。结论:检测到短杆菌属MP对L-赖氨酸-α-氧化酶有明显的诱导作用,并改进了其分离纯化工艺。关键词:抗菌剂、抗真菌、抗肿瘤、短杆菌、L-赖氨酸氧化酶、木霉、哈茨木霉 引用本文:Smirnova I、Neborak E、Shkinev V、Larichev V、Shneyder Y、Bashkirova I 等。短杆菌属代谢产物诱导哈茨木霉 L-赖氨酸-α-氧化酶及其分离纯化技术的改进。Avicenna J Med Biotech 2025;17(1):39-46。
摘要:晚期皮肤黑色素瘤被认为是最具侵袭性的皮肤癌类型,治疗反应率各不相同。目前,有几类免疫疗法和靶向疗法可用于治疗。免疫疗法可以通过触发宿主的免疫系统来抑制肿瘤生长及其复发,而靶向疗法则抑制特定分子或信号通路。然而,黑色素瘤对这些治疗的反应高度异质性,患者可能会产生耐药性。表观基因组学(DNA/组蛋白修饰)有助于癌症的发生和发展。表观遗传改变分为四个基因表达调控水平:DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA调控。赖氨酸甲基转移酶的失调与肿瘤的发生、侵袭、转移的发展、免疫微环境的变化和耐药性有关。赖氨酸组蛋白甲基转移酶 (KMT) 和烟酰胺 N-甲基转移酶 (NNMT) 抑制剂的研究对于理解癌症表观遗传机制和生物过程非常重要。除了免疫疗法和靶向疗法之外,KMT 和 NNMT 抑制剂的研究和开发也在进行中。许多研究正在探索这些化合物的治疗意义和可能的副作用,以及它们对目前已获批准的疗法的辅助潜力。重要的是,与任何药物开发一样,安全性、有效性和特异性是开发用于临床应用的甲基转移酶抑制剂时的关键考虑因素。因此,这篇综述文章介绍了最近可用的疗法和正在开发的用于晚期皮肤黑色素瘤治疗的疗法。
已确定必需氨基酸 (EAA) 通过快速改变翻译因子的磷酸化状态来调节乳腺上皮细胞的蛋白质合成。然而,对 EAA 供应的长期转录反应研究得很少。选定了八种转录因子作为 EAA 通过氨基酸反应 (ATF4、ATF6)、丝裂原活化蛋白激酶 (JUN、FOS、EGR1) 和雷帕霉素复合物 1 的机制靶点 (MYC、HIF1A、SREBF1) 影响乳腺细胞功能的候选介质。目的是确定在施加 EAA 缺乏 24 小时后,这些候选基因的表达是否以及何时在牛乳腺上皮细胞原代培养物中受到影响,并评估 EAA 缺乏对蛋白质合成、内质网大小、细胞增殖和脂肪形成的影响。将分化细胞在代表所有氨基酸的正常生理浓度 (CTL)、低赖氨酸 (LK) 或低蛋氨酸 (LM) 的 3 种处理培养基中的 1 种中培养 24、40、48 或 60 小时。LK 和 LM 均抑制蛋白质合成并激活 ATF4 表达,表明经典的氨基酸反应途径已被触发。然而,LK 或 LM 对内质网大小没有影响,可能与 LM 上 ATF6 表达升高有关。早期反应基因 JUN 、 FOS 、 EGR1 和 MYC 的表达没有因 EAA 缺乏而升高,但 LM 降低了 EGR1 的表达。LM 还增加了 HIF1A 的表达。EGR1 和 HIF1A 的表达结果与观察到的细胞增殖率下降一致。不同时间点 SREBF1 表达对 LK 和 LM 的不同反应可能导致对脂肪生成率没有影响。这些发现表明,EAA 缺乏可能通过转录因子抑制乳腺蛋白质的合成和细胞增殖。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年9月7日发布。 https://doi.org/10.1101/2024.09.04.611121 doi:Biorxiv Preprint
和消除脱氢丙氨酸(DHA),46个蛋白N末端胺的转移,47,48和光诱导的色氨酸 - 选择性修饰肽和蛋白质49(见图考虑到这一点,我们期望极高的Quatternized n原子将充当一个羧基激活组,可以在有效的胺传输反应中用于快速,清洁和选择性赖氨酸膜片。实际上,Mukaiyama的试剂(2-apination吡啶肾)已通过2-酰基N-甲基吡啶丹中间体(50)广泛用于有机化学的鉴定和酯阳离子,50,为我们的支持构提供了坚实的基础。但是,直接应用Mukaiyama的试剂将无法获得化学选择性肽和蛋白质。51因此,重新介绍吡啶量激活的酯是一个机会,可以与优化的生物物理特性以及内源性蛋白质仿真的线粒体富集一起评估高度反应性方法。在这里,我们报告了使用阳离子吡啶激活酯的易感赖氨酸选择性蛋白质修饰(图1b)。可以容易制备酯,稳定稳定数月,并且具有较高的氨基反应性和70%的赖氨酸选择性标记。然后,我们对细胞中的活性赖氨酸进行了基于活性的蛋白pro(ABPP)。总共,我们在MCF-7细胞裂解液中的250种蛋白质中定量鉴定350个高反应性赖氨酸标记的肽。此外,我们还实现了248个蛋白质,其中包含活细胞中的386个修饰的赖氨酸残基,并由某些线粒体共定位成像所产生,这表明线粒体靶向是由于带正电荷的阳性酯。52因此,吡啶量激活的酯提供了一个有前途的工具箱,以进一步促进时空研究和遗传操作。
l-赖氨酸,对于人类和动物营养而言,必不可少的氨基酸至关重要,在动物饲料中是一种有价值的药物和添加剂。尼日利亚每年都会进口大量的L-赖氨酸来支持其动物饲料行业。在像尼日利亚这样的发展中国家中,一种可行的生物技术生产方法涉及固态发酵。这种方法不仅具有环境优势,而且还促进了同时生产有益的饲料酶。关键词:L-赖氨酸,固态发酵,尼日利亚市场,谷氨酰胺。引言植物蛋白通常缺乏至少一种必需的氨基酸,其中谷物缺乏赖氨酸,而缺乏蛋氨酸和半胱氨酸的豆类谷物,均含有硫氨基酸(Eruvbetine,2009年)。l-赖氨酸是一种必不可少的氨基酸对动物和人类营养至关重要的氨基酸,通常在饲料中补充以补偿这些缺陷,尤其是在食品和动物饲料领域。在2021年,生产了约220万吨的L-赖氨酸。
大多数肿瘤类型要么对激酶抑制剂没有反应,要么产生耐药性,这通常是由于癌细胞更广泛的信号传导回路中存在补偿性促生存途径。在这里,我们发现,通过将激酶网络重塑为赋予药物敏感性的拓扑结构,可以克服培养的原代急性髓系白血病 (AML) 细胞对激酶抑制剂的内在耐药性。我们确定了几种染色质修饰酶的拮抗剂,这些拮抗剂使 AML 细胞系对激酶抑制剂敏感。其中,我们证实赖氨酸特异性脱甲基酶 (LSD1;也称为 KDM1A) 的抑制剂重新连接了 AML 细胞中的激酶信号,从而增加了激酶 MEK 的活性,并广泛抑制了其他激酶和反馈回路的活性。因此,AML 细胞系和大约一半的原代人类 AML 样本对 MEK 抑制剂曲美替尼具有敏感性。具有 KRAS 突变和 MEK 通路活性高的原代人类细胞对 LSD1 抑制剂和曲美替尼顺序治疗反应最好,而具有 NRAS 突变和 mTOR 活性高的原代人类细胞反应较差。总体而言,我们的研究揭示了 MEK 通路是 AML 中对 LSD1 抑制剂产生耐药性的机制,并展示了一种调节激酶网络回路以潜在克服对激酶抑制剂治疗耐药性的方法。
摘要:蛋白质的共价可逆修饰是探针和候选疗法的开发策略。但是,非催化赖氨酸的共价可逆靶向尤其具有挑战性。在此,我们表征了2-羟基-1-萘醛(HNA)片段是KREV相互作用的非催化赖氨酸(LYS 720)的靶向共价可逆配体,被困在1(krit1)蛋白。我们表明,HNA与KRIT1的相互作用高度特异性,导致停留时间> 8 h,并抑制玻璃1(HEG1)-KRIT1蛋白 - 蛋白质 - 蛋白质相互作用(PPI)的心脏。筛选HNA衍生物鉴定出表现出与母体相似的结合模式的类似物,但靶标接合和更强的抑制活性。这些结果表明,HNA是一个有效的位点导向片段,在开发HEG1-KRIT1 PPI抑制剂方面有希望。此外,当与促进接近性的模板效应结合使用时,醛氨酸化学可以产生持久的可逆共价修饰,对非催化赖氨酸的变化。关键字:蛋白质 - 蛋白质相互作用,非催化赖氨酸,靶向共价修饰,共价可逆配体,抑制动力学
摘要:KAT8是一种赖氨酸乙酰转移酶,主要催化组蛋白H4(H4K16)的Lys16的乙酰化。KAT8失调与许多癌症类型的发展和转移有关,包括非小细胞肺癌(NSCLC)和急性髓样白血病(AML)。到目前为止,很少有KAT8抑制剂报道,其中没有一个显示选择性活动。基于KAT3B/KDAC抑制剂C646,我们开发了一系列N-苯基-5-吡唑酮衍生物,并将化合物19和34鉴定为低微摩尔KAT8抑制剂在KAT和KDAC面板上选择性的低微球Kat8抑制剂。Western印迹,免疫荧光和CETSA实验表明,这两种抑制剂均选择性地靶向细胞中的Kat8。19和34在包括NSCLC和AML在内的不同癌细胞系中表现出Microl摩尔抗增生活性,而不会影响非转化细胞的生存能力。总体而言,这些化合物是阐明Kat8生物学的宝贵工具,它们的简单结构使它们成为有希望的未来优化研究的候选人。
摘要:迫切需要新药物来预防和治疗疟疾。大多数抗疟药发现依赖于表型筛查。但是,随着改进的目标验证策略的发展,现在正在利用以目标为中心的方法。在这里,我们描述了工具包的开发,以支持有希望的靶靶标,赖氨酸TRNA合成酶(PF KRS)的治疗性开发。该工具包包括抗性突变体,以探测抗性机制和针对特定化学型的靶向参与;一种能够产生适合配体浸泡的晶体的杂种KRS蛋白,从而提供高分辨率的结构信息以指导化合物优化;化学探针促进旨在揭示各种特定相互作用蛋白质和热蛋白质组谱分析(TPP)(TPP)的下拉研究;以及简化的等温TPP方法,可在生物学相关的环境中无公正地确认靶向靶向。这种工具和方法的组合充当开发未来目标软件包的模板。关键字:疟原虫,赖氨酸TRNA合成酶,热蛋白质组分析(TPP),等温TPP,化学下拉,抗疟药