300-360°C。 在这些温度下,为了抑制沸腾,HTL过程以1400-2800psig运行。 这些条件低于水的临界点,尽管已经进行了超临界HTL处理。 在加工条件下,进料中的有机材料分解以形成生物油和一些气体(主要是甲烷和二氧化碳)。 转换步骤中的停留时间因进料的性质和过程条件而异,但在10-30分钟内。 迄今为止的测试表明,转换步骤可以在搅拌的储罐反应器或塞流动反应器中执行,其性能之间的差异很小。 在加工压力和温度下,水的奇怪特性是,溶剂特性是从在较低压力和温度下观察到的水的溶剂特性反转。 具体而言,饲料的有机成分降解产生的生物油变得可溶,而无机材料几乎不溶于溶解。 这对过程具有非常有用的含义。 它使无机分数可以在降水步骤中与大部分水和油分开。 一旦油和水冷却,生物油将不再溶于水中。 机油和水以及相关的气体可以在3相分离器中分离。 图2显示了藻类饲料中HTL的试验植物测试的产物。300-360°C。在这些温度下,为了抑制沸腾,HTL过程以1400-2800psig运行。这些条件低于水的临界点,尽管已经进行了超临界HTL处理。在加工条件下,进料中的有机材料分解以形成生物油和一些气体(主要是甲烷和二氧化碳)。转换步骤中的停留时间因进料的性质和过程条件而异,但在10-30分钟内。迄今为止的测试表明,转换步骤可以在搅拌的储罐反应器或塞流动反应器中执行,其性能之间的差异很小。在加工压力和温度下,水的奇怪特性是,溶剂特性是从在较低压力和温度下观察到的水的溶剂特性反转。具体而言,饲料的有机成分降解产生的生物油变得可溶,而无机材料几乎不溶于溶解。这对过程具有非常有用的含义。它使无机分数可以在降水步骤中与大部分水和油分开。一旦油和水冷却,生物油将不再溶于水中。机油和水以及相关的气体可以在3相分离器中分离。图2显示了藻类饲料中HTL的试验植物测试的产物。
研究的目的是区分聚光太阳能发电 (CSP) 中的不同传热流体 (HTF)。由于世界正面临重大问题,尤其是环境问题和不断增长的电力需求,CSP 技术近年来越来越受到关注。世界各国目前致力于缓解气候变化和限制温室气体排放,以使全球气温上升保持在 2°C 以下。因此,发电需要可再生能源。最广泛使用的技术之一是太阳能塔,其中镜子将太阳辐射反射到塔顶的中央接收器中,该接收器包含一种称为传热流体的工作流体。HTF 是太阳能发电塔厂中最重要的组件之一,用于传输和储存热能以发电。本研究重点介绍太阳能发电塔中使用的 HTF 以及它如何影响工厂的效率。本研究中讨论的 HTF 是空气、水/蒸汽、熔盐、液态钠和超临界 CO 2。在对太阳能塔系统中的传热流体 (HTF) 的审查中,研究结果表明,空气可以达到最高温度,而液态钠可以实现最高的整体工厂效率。
摘要我们提出了一个由Kimberlina 1.2 CO 2储层模型构建的合成多尺度的多物理数据集,该模型基于加利福尼亚州南部San Joaquin盆地的潜在CO 2存储地点。在300个模型中,一种选定的储层模拟场景在发病和20年的CO 2注入后产生水文状态模型。随后,这些模型被转化为地球物理特性,包括p-和s波地震速度,饱和的降解性,其中饱和流体可以是盐水和超临界CO 2的组合,以及使用已建立的经验经验的岩石物理物理物理学关系的组合。从地球物理特性的这些3D分布中,我们通过获得的综合延时地震,重力和电磁响应,并具有模仿现实监测调查的获取几何形状,并且可以在实际的现场情况下实现。我们还创建了一系列CO 2饱和度,声速,密度和诱导电阻率的合成井原木,并在注射井和三个监测井中。这些是通过将地球物理模型的低频趋势与潜在存储位置收集的实际井木的高频变化相结合来构建的。此外,要更好
抽象锂离子电池(LIB)在包括运输,电子和太阳能在内的众多主要行业中起着至关重要的作用。虽然使用量和多氟烷基(PFAS)添加剂可以提高性能和寿命,但通过电池制造和回收操作将这些添加剂的偶然释放到环境中可能会对环境,人类健康和财务成果产生负面影响。当前的电池制造和回收废物处理方法并非旨在消除PFA,从而强调了对高级解决方案的需求。超临界水氧化(SCWO)已被证明可以在各种复杂的废物流中破坏PFA,从而使其成为有前途的解决方案。374Water的AirScWo技术用于处理含有HQ-115的解决方案,该解决方案是锂离子电池中商业使用的添加剂。HQ-115,也称为BIS(三氟甲磺酰基)酰亚胺(LITFSI),是一种双氟烷基磺酰亚胺(BIS-FASIS)的一种类型秒。这些结果表明,374Water的AirScWo技术可用于快速破坏基于PFA的LIB添加剂,并可能提高一旦商业化的LIB制造和回收利用的可持续性。
在我们的项目“用于先进动力循环的经济型周度和季节性热化学和化学能量存储”中,我们提议为下一代聚光太阳能 (CSP) 发电厂开发和系统集成多级能量存储。以 Gen3 计划下开发的结合自由落体粒子接收器和超临界 CO2 动力块的新型 CSP 系统为基准,我们提出了一种树级存储系统:每日 (L1)、每周 (L2) 和季节性 (L3)。对于 L1,我们使用接收器中加热的粒子中所含的显热;对于 L2,我们使用金属氧化物的显热和热化学热,该金属氧化物被热量还原(充电)并在空气中氧化(放电);对于 L3,我们使用氢气形式的化学热,该化学热是在水分解热化学循环中利用非高峰(低成本)电力产生的。该系统具有独特的灵活性,我们可以在最方便的时候买卖电力,并允许将氢气作为商品出售以抵消运营和资本成本。在适当的条件下,后者有可能将平准化电力成本 (LCOE) 降低到甚至低于 Gen3 CSP 解决方案。
拖曳船上和系泊观测表明,内部重力波越过帕劳北部热带西太平洋海域海面以下 1000 米的高大超临界海底山脊。背风波或地形弗劳德数 Nh 0 / U 0(其中 N 为浮力频率,h 0 为山脊高度,U 0 为远场速度)介于 25 和 140 之间。波浪是由潮汐和低频流叠加产生的,因此具有两个不同的能量源,组合振幅高达 0.2 ms 2 1 。波浪的局部破碎导致湍流动能耗散率增强,在靠近地形的山脊背风处达到 10 26 W kg 2 1 以上。湍流观测显示大潮和小潮条件形成鲜明对比。大潮期间,潮汐流占主导地位,湍流在海脊两侧分布大致相等。小潮期间,平均流占主导地位,相对于平均流,湍流主要出现在海脊下游一侧。海脊对水流施加的阻力估计为 O (10 4 ) N m 2 1(每次穿越海脊时),以及相关的功率损失,为低频海洋环流和潮汐流提供了能量吸收。
超临界流体(SCF)可以在各种环境和工业过程中找到。它们表现出异常的热力学行为,该行为源于它们波动的异质微结构。以纳米空间和比索的时间分辨率在高温度和高压下表征这些流体的动力学非常具有挑战性。硬X射线射线激光器的出现使新型的多孔超快X射线散射技术(例如X射线光子相关光谱(XPC)和X射线泵X射线探针(XPXP))的发展能够开发出来。这些技术为在前所未有的时空分辨率下解决SCF中的超快微观行为提供了新的机会,从而揭示了其微结构的动力学。但是,利用这些功能需要定制的高压和高温样本系统,该系统经过优化,以最大程度地提高信号强度和寻址仪器特异性挑战,例如梁线组件中的漂移,X射线散射背景和多X射线射线束重叠。我们提出了一个与广泛的SCF兼容的压力单元,并具有内置的XPC和XPXP的光学访问,并讨论了压力池设计的关键方面,特别关注XPC的设计优化。
史蒂夫·霍德尔(Steve Howdle)报告了可再生资源的新单体和聚合物的开发。已经使用了许多不同的来源来创建各种单体和聚合物。这些来源包括山梨糖醇,乳酸,ε-辅助酮和脂肪酸直接来自自然,包括从树皮和废物种子中的油中。该小组在利用超临界二氧化碳(SCCO₂)方面发展了重要的专业知识。,已经利用了SCCO₂的低粘度和高扩散率,以产生高效且可逆的增塑剂。这种原位增价允许在低至40°C的温度下进行聚合反应;在常规操作条件下可能低得多。在某些情况下,这些较低的温度工作条件为使用酶促催化剂提供了从可再生单体产生新的聚合物材料的机会。也有报道说,我们已经利用这些新单体制备了一系列新单体,这些单体是我们利用来创建新的DI和Terblock共聚物的。这些表现出广泛的应用,作为表面,涂料,考古材料的固结物以及可以用作压力感应粘合剂的硬质块材料。也已经证明了3-D打印中的新应用程序和机会。(图1)
摘要本研究旨在回顾有关西红柿,类胡萝卜素,尤其是番茄红素的当前知识,突出了其健康益处以及可持续使用番茄加工行业的可能性。属于甲壳虫家族,西红柿(Solanum lycopersicum L.)是世界上最消耗的蔬菜之一,以Natura形式和工业化产品都赞赏。番茄行业产生了大量的废物,其管理不足会带来环境障碍,以及浪费有价值的生物活性化合物,例如高抗氧化剂番茄红素,其消耗与某些类型的癌症和心血管疾病的降低风险有关。创新和可持续的提取方法,例如使用绿色溶剂和超临界液体辅助技术,超声波和其他技术,以优化 - 生产的使用,从而为循环经济和可持续性做出贡献。有必要促进克服当前的挑战并促进解决方案,以减少环境影响,高效且可持续的提取,降低成本降低和提取技术的可扩展性,旨在为各种应用获得价值增值产品。关键字:西红柿;番茄红素;生物活性化合物;可持续提取;生产工业。属于Solanaceae家族,番茄(Solanum lycopersicum L.)是全球播放的蔬菜之一,既欣赏新鲜和加工产品。摘要本研究旨在回顾有关西红柿和类胡萝卜素(尤其是番茄红素)的当前知识,突出了它们的健康益处以及对西红柿加工行业的副产品的可持续利用。番茄行业产生了大量的废物,不正确的管理可能会引起环境问题,除了导致失去有价值的生物活性化合物(例如番茄红素)。番茄红素具有较高的抗氧化能力,其消耗与某些类型的癌症和心血管疾病的风险降低有关。创新和可持续的提取方法,包括使用绿色溶剂和绿色溶剂和技术,例如超临界液体,超声辅助和其他新兴技术,以优化这些副产品的价值,从而有助于循环经济和可持续性。需要进一步的研究来克服当前的挑战,并促进解决方案,以减少环境影响,实现高效且可持续的提取,降低成本以及提高提取技术的可伸缩性,从而为各种应用获得高价值产品。关键字:番茄;番茄红素;生物活性化合物;可持续提取;工业副产品。Resumen Este estudio tiene como objetivo revisar el conocimiento actual sobre el tomate y los carotenoides, especialmente el licopeno, destacando sus beneficios para la salud y las posibilidades de aprovechamiento sostenible de los subproductos de la industria del procesamiento del tomate.属于Solanáceas家族,El Tomate(Solanum lycopersicum L.)是世界上消费最多的蔬菜之一,以其新鲜的形式非常赞赏
首字母缩略词 含义 AFB 空军基地 AFCEC 空军土木工程中心 AFFF 水成膜泡沫 AFWERX 空军工作项目 ANG 空军国民警卫队 ARNG 陆军国民警卫队 CERCLA 综合环境反应、赔偿和责任法 DoD 国防部 ECO 电化学氧化 EPA 环境保护局 ERA 环境恢复帐户 ESTCP 环境安全技术认证计划 FY 财政年度 GAC 颗粒活性炭 GW 地下水 HALT 热液碱性处理 IDW 调查衍生废物 IX 离子交换 JRB 联合预备役基地 MAC 磁性活性炭 MILDEP 军事部门 NA 不适用 NAS 海军航空站 NAVFAC 海军设施工程系统司令部 NDAA 国防授权法案 NDCEE 国防能源与环境中心 NF 纳滤 PFAS 全氟和多氟烷基物质 PFAST PFAS 泡沫辅助土壤处理 RI 补救调查 RO 逆向渗透 SAFF 表面活性泡沫分馏 SCWO 超临界水氧化 SERDP 战略环境研究与发展计划 SFB 太空军基地 SW 地表水 TBD 待定 TRL 技术就绪水平 UV 紫外线 UV/SGM 紫外线活化硅基颗粒介质 WW 废水