土著藏族已经开发了自适应生理机制,以应对Qinghai-Xizang高原的低氧环境。据报道,与缺氧诱导因子途径相关的内皮PAS蛋白1基因(EPAS1)内的遗传变异与藏族之间的低氧适应性有关。大脑在体内表现出最高的氧气消耗,特别容易受到高空缺氧的影响。我们研究了Qinghai-Xizang高原中藏族的结构和功能性脑网络的遗传影响。在这项研究中,招募了135名年轻土著藏族(62名男性和73名女性)作为实验组。 65名与相关特征相匹配的低地汉族人被招募为遗传变异分析的对照组。基于先前的报道,选择了EPAS1中的12个单核苷酸多态性基因座进行基因分型。随后,使用磁共振成像(MRI)获得了大脑的T1结构和静止状态功能图像。单倍型分析表明,藏族中GA和CAAA单倍型的频率明显高于低地汉族个体。藏人被认为是更高的适应性。因此,藏族被归类为遗传适应的藏族(GHA-tibetans)和遗传适应性较低的藏人(GLA-tibetans)。自适应的大脑变化也参与了自发的休息状态活动网络。与Gla-tibetans相比,Gha-tibetans在左中央回和右侧毛氨酸回去,右侧额叶和右后扣带回回去的皮质表面积明显更大,在左PericalCarine Gyrus和右PericalCarine Gyrus和右上角的皮质体积中,右侧额叶和右后扣回去。在多个网络中观察到功能连接显着提高,包括体育体网络,腹侧注意网络,视觉网络和默认模式网络。这项研究揭示了EPAS1遗传变异与土著藏族中大脑结构和功能网络的适应性之间的关系,表明大脑的适应性变化主要集中在与视觉感知,运动控制和相关功能网络相关的区域上。这些大脑变化可能有助于土著人口在极端环境中更好地调节其身体活动。
会议报道:从科幻到现实,脑机接口如何连接 AI 与人类智慧? “《黑客帝国》在某种意义上描绘了脑机接口的终极目标:向大脑输入一个完整 的虚拟外部环境并与之双向交互。”上海科技大学生物医学工程学院常任轨助理 教授、计算认知与转化神经科学实验室主任李远宁说道。 近日,由天桥脑科学研究院(中国)主办的“从科幻到现实——人类智能如何与 人工智能融合?”主题活动在上海图书馆东馆举行。 活动上,李远宁与知名科幻作家,银河奖、全球华语星云奖金奖得主江波展开了 跨越科幻与科学的对谈,将脑机接口( Brain Computer Interface , BCI )这项从小 说走向现实、不断引爆学界和产业界热点的技术进行了生动演绎,探索脑机接口 与 AI 融合的无限可能,并客观阐释了从令人遐想的突破性个例到广泛应用的距 离。 脑科学是人类所知甚少的“自然科学最后一块疆域”,也是科幻作品经久不衰的 灵感来源。今年以来,天桥脑科学研究院(中国)发力 AI for Brain Science ,鼓励 AI 和脑科学这两个“黑匣子”互相启发、互相破译。 一方面,研究院已组织了六场 AI for Brain Science 学术会议,促进 AI 科学家、神 经科学家、临床医生、产业界专家和高校年轻学生学者同台共话,分享 AI for Brain Science 相关基础研究和健康应用,系列会议大众总观看 52 万人次,参会领域专 家 800 余人;另一方面,研究院也积极组织“ AI 问脑”系列科普会议,邀请 AI 科 学家、脑科学家展开跨界对谈,激发公众对 AI for Brain Science 的兴趣和探索。 点击此处阅读原文
跨任务脑电信号分析方法研究已成为一个快速发展的研究热点。近年来,越来越多的研究者将脑电信号分析中广泛使用的特征应用到跨任务脑电信号分析研究中,包括功率谱密度(PSD)特征(Touryan et al.,2016;Adewale and Panoutsos,2019)、融合特征(Kakkos et al.,2021)等,旨在找到有效处理任务间差异的方法。同时,一些研究者通过与传统特征分类方法进行比较,探索出对不同任务之间的差异更加友好的分类器,包括多层感知器神经网络(MLPNN)(Kamrud et al.,2021)、领域自适应方法(Zhou et al.,2022)、滑动窗口支持向量机(SVM)(Boring et al.,2020)等。另一方面,为了缩小任务间的差异,提出了一些基于深度学习模型的新型跨任务模型,如卷积神经网络(CNN)(Mota et al.,2021)、循环神经网络(RNN)(Gupta et al.,2021)、基于度量的方法(Jia et al.,2023)、CNN 与 RNN 的组合(Zhang et al.,2019;Zhou et al., 2019;Taori等,2022)等。但跨任务脑电信号分析方法领域仍有许多未探索的领域,例如:任务分割与复杂度设计(Kamrud等,2021)、多源域自适应应用(Zhou等,2022)、多尺度多方向滤波器研究(Taori等,2022)、同时考虑特征提取和特征分类、增加数据量等。另外,跨任务分析与比较常见的跨学科研究也存在一些相互联系。本研究将从特征提取和特征分类的角度对跨任务脑电信号分析相关的文献进行综述,并讨论跨任务研究与跨学科研究对于脑电信号分析的关系,最后提出我们原创的观点,以期为跨任务脑电信号分析研究领域提供有益的建议。
Battaglini,M.,Gentile,G.,Luchetti,L.,Giorgio,A.,Vrenken,H. M.,Rocca,M。A.,Preziosa,P.,Gallo,A.,…De Stefano,N。(2019年)。寿命规范性数据有关大脑体积变化的速率。衰老的神经生物学,81,30 - 37。https://doi.org/10.1016/j.neurobiolaging.2019。05.010 Cam-Can Consortium,Samu,D.,Campbell,K。L.,Tsvetanov,K。A.,Shafto,M。A.,&Tyler,L。K.(2017)。随着年龄的增长而保留的认知功能取决于网络响应中的域依赖性变化。自然通讯,8(1),14743。https://doi.org/10.1038/ NComms14743 Chan,M。Y.,Park,D。C.,Savalia,N。K.,Petersen,S。E.和Wig,G。S.(2014)。减少了整个健康成人寿命中大脑系统的分离。美国国家科学院的会议记录,111(46),E4997 - E5006。Cox,R。W.(1996)。afni:用于分析和可视化功能磁共振神经图像的软件。计算机和生物医学研究,29(3),162 - 173。Dale,A.,Fischl,B。,&Sereno,M。I.(1999)。基于表面的皮质分析:I。分割和表面重建。Neuroimage,9(2),179 - 194。https://doi.org/10.1006/nimg.1998.0395 Destrieux,C.,Fischl,B.,Dale,A。,&Halgren,A。,&Halgren,E。(2010)。使用标准解剖学名称的人皮层回旋和硫酸自动曲柄。Neuroimage,53(1),1 - 15。(2016)。Soc。Dhollander,T。和Connelly,A。一种新型的迭代方法,可以从仅单壳( + b = 0)差异MRI数据中获得多组织CSD的益处。24 int。宏伟。共振。Med,24,3010。Esteban,O.,Markiewicz,C。J.,Blair,R。W.,Moodie,C.A.fmriprep:用于功能性MRI的强大预处理管道。自然方法,16(1),111 - 116。Fan,L.,Li,H.,Zhuo,J.,Zhang,Y.,Wang,J.,Chen,L.,Yang,Z.,Chu,C.,Xie,S。,&Laird,A。R.(2016)。 人类Brainetome Atlas:基于连接架构的新大脑图集。 大脑皮层,26(8),3508 - 3526。 Fischl,B。和Dale,A。M.(2000)。 通过磁共振图像测量人脑皮质的厚度。 美国国家科学院的会议录,97(20),11050 - 11055。 Fischl,B.,Liu,A。和Dale,A。M.(2001)。 自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。 IEEE医学成像,20(1),70 - 80。 Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A. 整个大脑分割:人脑中神经解剖结构的自动标记。 Neuron,33,341 - 355。 磁共振图像的独立序列分段。 (1999)。Fan,L.,Li,H.,Zhuo,J.,Zhang,Y.,Wang,J.,Chen,L.,Yang,Z.,Chu,C.,Xie,S。,&Laird,A。R.(2016)。人类Brainetome Atlas:基于连接架构的新大脑图集。大脑皮层,26(8),3508 - 3526。Fischl,B。和Dale,A。M.(2000)。通过磁共振图像测量人脑皮质的厚度。美国国家科学院的会议录,97(20),11050 - 11055。Fischl,B.,Liu,A。和Dale,A。M.(2001)。 自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。 IEEE医学成像,20(1),70 - 80。 Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A. 整个大脑分割:人脑中神经解剖结构的自动标记。 Neuron,33,341 - 355。 磁共振图像的独立序列分段。 (1999)。Fischl,B.,Liu,A。和Dale,A。M.(2001)。自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。IEEE医学成像,20(1),70 - 80。Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A.整个大脑分割:人脑中神经解剖结构的自动标记。Neuron,33,341 - 355。磁共振图像的独立序列分段。(1999)。Fischl,B.,Salat,D.H.,van der Kouwe,A.J.W.,Makris,N.,Ségonne,F.,Quinn,B.T。,&Dale,A.M。(2004)。 Neuroimage,23(Suppl 1),S69 - S84。 https://doi.org/10.1016/j.neuroimage.2004.07.016 Fischl,B.,Sereno,M.I。,&Dale,&Dale,A. 基于表面的分析:II:通货膨胀,变平和基于表面的坐标系。 Neuro-图像,9(2),195 - 207。https://doi.org/10.1006/nimg.1998.0396 Gao,M.,Wong,C.H。Y.,Huang,Huang,H.,Shao,Shao,Shao,R. 基于连接的模型可以预测老年人的速度。 Neuroimage,223,117290。https://doi.org/ 10.1016/j.neuroimage.2020.117290 Gao,S.,Greene,A.S.,Constable,R.T。,&Scheinost,D。(2019)。 组合多个连接组可改善表型度量的预测建模。 Neuroimage,201,116038。https://doi.org/10.1016/j。 Neuroimage.2019.116038Fischl,B.,Salat,D.H.,van der Kouwe,A.J.W.,Makris,N.,Ségonne,F.,Quinn,B.T。,&Dale,A.M。(2004)。Neuroimage,23(Suppl 1),S69 - S84。https://doi.org/10.1016/j.neuroimage.2004.07.016 Fischl,B.,Sereno,M.I。,&Dale,&Dale,A.基于表面的分析:II:通货膨胀,变平和基于表面的坐标系。Neuro-图像,9(2),195 - 207。https://doi.org/10.1006/nimg.1998.0396 Gao,M.,Wong,C.H。Y.,Huang,Huang,H.,Shao,Shao,Shao,R.基于连接的模型可以预测老年人的速度。Neuroimage,223,117290。https://doi.org/ 10.1016/j.neuroimage.2020.117290 Gao,S.,Greene,A.S.,Constable,R.T。,&Scheinost,D。(2019)。组合多个连接组可改善表型度量的预测建模。Neuroimage,201,116038。https://doi.org/10.1016/j。Neuroimage.2019.116038
致谢 ............................................................................................................................. 67
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
5 上海交通大学生物医学工程学院,上海,200030 【摘要】脑机接口(BCI)设备是进行神经刺激和记录的重要工具,在神经系统疾病的诊断和治疗中有着广阔的应用前景。此外,磁共振成像(MRI)是一种有效且非侵入性的全脑信号捕获技术,可以提供大脑结构和激活模式的详细信息。将BCI设备的神经刺激/记录功能与MRI的非侵入性检测功能相结合对脑功能分析具有重要意义。然而,这种结合对神经接口设备的磁和电性能提出了特定的要求。首先探讨了BCI设备与MRI之间的相互作用,随后对二者结合可能产生的安全风险进行总结和整理,从BCI设备的金属电极、导线等危害的来源入手,分析了存在的问题,并总结了目前的研究对策。最后,简要讨论了BCI磁共振安全性的监管问题,并提出了增强相关BCI设备磁共振兼容性的建议。
ISSN 1004‑9037,代码元SCYCE4数据采集与处理杂志卷。37,编号6,2022年11月,第pp。1401-1411 doi:10。16337/j。1004-9037。2022。06。020ⓒ2022撰写的数据采集与处理杂志
∗ 基金项目 : 国家自然科学基金 (61072135,81971702), 中央高校基本科研业务费专项 (2042017gf0075,2042019gf00720), 湖北