机舱内部组件可以利用石墨烯的热性能,因为众所周知,当石墨烯注入聚合物基质时,它可以有效地改变热解途径以及吸热和导热性 [4]。可以通过许多关键方面来中断燃烧过程,例如限制点火的热量和燃料源 [5]。这是通过石墨烯分解引起的协同效应实现的,在表面形成有效的炭层,在燃烧时形成致密的物理屏障 [6]。烧焦的屏障形成了一条“曲折的路径”,有效阻止热量通过聚合物传播,防止进一步燃烧。此外,炭化屏障还可以防止和延迟分解过程中产生的聚合物中有毒气体副产品的逸出。
准确的人类轨迹预测对于诸如Au sostos evers,机器人技术和监视系统等应用至关重要。然而,现有模型通常无法完全利用非语言社会提示在浏览空间时潜意识的人类信息。为了解决这个问题,我们介绍了社会转变,这是一个基于通用变压器的模型,利用多样化和众多的视觉提示来预测人类行为。我们将提示的想法从自然语言处理(NLP)转化为人类轨迹预测的任务,其中提示可以是地面上的X-y坐标序列,图像平面中的边界框或2d或3d中的身体姿势关键点。这又增加了轨迹数据,从而导致人类轨迹预测增强。使用掩蔽技术,我们的模型通过基于可用的视觉提示捕获代理之间的空间相互作用来表现灵活性和适应性。我们深入研究了使用2D与3D姿势的优点,以及一组有限的姿势。另外,我们研究了空间和时间注意图,以确定序列中哪些关键点和时间步骤对于优化人类轨迹预测至关重要。我们的方法在多个数据集上得到了验证,包括JTA,JRDB,行人和骑自行车的人在道路交通和Eth-Cucy中进行验证。该代码公开可用:https://github.com/vita-epfl/social-transmotion。
图3:随着年龄的增长:(a)脑图通过左运动皮层显示切片,并在标准大脑上覆盖了β调制(蓝色/绿色)的伪-T统计图。为每个亚组指示峰值MNI坐标。时间频谱图显示了神经振荡振幅的调节(光谱幅度的分数变化相对于2.5-3 s窗口中测得的基线)。垂直线表示第一个盲文刺激的时间。在所有情况下,从峰值beta denngonisation(在左感觉运动皮层)的位置中提取结果。请注意刺激过程中明显的β幅度降低。插图线图显示了4-40 Hz试验平均的相锁诱发响应,预期的突出偏转在20和50 ms左右。 (b)绘制的beta波段振幅(0.3-0.8 s窗口与1-1.5 s窗口)的最大差异绘制为年龄的函数(即,每个数据点显示了一个不同的参与者;三角形代表孩子,圈子代表成人)。注意显着相关(𝑅2= 0.29,𝑝= 0.00004 *)。(c)绘制的诱发响应的P50分量的幅度绘制为年龄。没有显着相关性(𝑅2= 0.04,𝑝= 0.14)。这里的所有数据都与食指刺激有关;相似的结果可用于补充信息第1节中的小指刺激。
目的本研究的目的是开发和评估一种新型的跨性手术方法的可行性和安全性,用于将人类诱导的多发性干细胞衍生的多巴胺能神经蛋白酶神经蛋白酶细胞(DANPC)传递到使用非人类灵长类动物和手术技术和工具与人类临床临床翻译相关的核核核中。方法在实时插入性MRI指南下,九种免疫抑制,未经剂量的成年cynomolgus猕猴(4名女性,5名男性)接受了对媒介物或DANPCS的内部注射(0.9×10 5至1.1×10 5细胞/ µ L)。将注射液与1毫米Gadoteridol(用于术中MRI可视化)结合,并通过瞬时方法通过每个半球(腹侧和背侧)通过两个轨道进行交付。分别为左右壳核(输注速率2.5 µl/min)的输注总量分别为25 µL和50 µL。动物,并对7或30天进行安乐死;完整的尸检由董事会认证的兽医病理学家进行。脑组织并处理以进行免疫组织化学,包括针对人类特异性标记的STEM121。结果通过瞬态方法,优化的手术技术和工具成功地靶向了壳核。术中MR图像证实了所有动物的靶标内注射。所有动物都存活到预定的终止,而没有神经系统缺陷的临床证据。结论所有动物的输送系统,注射程序和DANPC均得到很好的耐受性。手术结束时注意到手术的前4只动物的大脑肿胀温和,其中3只瞬时视力降低。在手术过程中,甘露醇疗法给药并减少了静脉液,解决了这些并发症。针对STEM121的免疫染色证实了沿着DANPC治疗的动物靶向壳区域内的注射轨道存在移植细胞。所有不良组织学发现在范围上受到限制,并且与外科手术操作,伤害手术以及对套管插入引起的机械破坏的后炎症反应一致。通过甘露醇给药和静脉液体减少在手术过程中预防轻度脑肿胀,可以避免视觉效果。研究结果表明,这种新型的跨轴方法可用于正确,安全地将细胞注射到后交流盘并支持临床研究中。
轨迹规范是一种指定具有公差的飞机轨迹的方法,使得飞行中任何给定时间的位置都被限制在精确定义的边界空间内。边界空间由相对于参考轨迹的公差定义,该参考轨迹将位置指定为时间函数。公差是动态的,基于飞机导航能力和交通状况。轨迹规范可以保证在任意时间段内的安全分离,即使在空中交通管制 (ATC) 系统或数据链路发生故障的情况下也是如此。它可以帮助实现 ATC 自动化所需的高安全性和可靠性,并且可以减少正常运行期间对战术 ATC 备用系统的依赖。本文介绍了用于检测和解决服务于主要机场的终端空域中指定轨迹之间冲突的算法和软件。在对主要终端空域全天交通的快速模拟中,所有冲突都几乎实时得到解决,证明了该概念的计算可行性和初步操作可行性。
随着无人机系统 (UAS) 不断融入美国国家空域系统 (NAS),需要量化无人机和载人飞机之间空中碰撞的风险,以支持法规和标准的制定。监管机构和标准制定组织都广泛使用了使用飞机飞行概率模型的蒙特卡罗碰撞风险分析模拟。我们之前已经展示了一种开发小型无人机系统 (sUAS) 飞行模型的方法,该方法利用开源地理空间信息和地图数据集来生成具有代表性的低空无人操作。这项工作在之前的研究基础上进行了扩展,评估了开源数据的可扩展性和多样性,以支持当前所需的风险评估。我们还考虑将这些轨迹与生成式载人飞机模型配对,以创建用于蒙特卡罗模拟的相遇。
详细的跟踪数据对于理解动物行为背后的复杂机制至关重要。在这里,我们提供了一个全面的数据集,其中包含来自105个遗传学菌株的30,000多个果蝇Melanogaster个体的行为电影和轨迹,其中包括果蝇基因参考面板的104种野生型菌株以及一个视力障碍的突变体。在15分钟的会议期间收集了由遗传背景,性别和社会环境分类的这些数据,包括五分钟的重复迫在眉睫的刺激,以引起恐惧反应。此外,我们的实验设计将小组实验与随机组合的菌株对结合,以研究小组成员对行为动力学的协同作用。除了对运动,恐惧反应和社交相互作用的遗传因素进行详细分析之外,该数据集提供了一个独特的机会来检查遗传相同果蝇内的个体行为变异性。通过在不同的遗传和环境环境中捕获各种各样的行为,这些数据是促进我们对遗传,个性和群体相互作用如何影响动物行为的理解的宝贵资源。
至少有一项行动或承诺,几乎三分之一的追踪指标着重于粮食安全挑战(参见图4)。例如,到2024年,印度将1000万户家庭的“平衡营养可用”设定为“ Agri Nutri Garden”倡议。12它还包括基于食品的安全网计划,在2020年达到了近8亿人,并通过餐饮方案接近1.2亿儿童。此外,还有一些粮食安全计划以公平的价格每月提供每人5千克谷物,以及旨在通过营养干预措施增强儿童和孕产妇健康的计划,从而使1900万孕妇和哺乳期妇女和6岁以下的儿童受益于1900万孕妇和8200万儿童。12在UND途径省略定量目标的地区,它与相关政策联系起来。c
成熟的脊椎动物使用前庭脊髓神经元保持姿势,这些神经元将感知的不稳定转化为脊柱运动电路的反射命令。姿势稳定性在整个开发过程中有所改善。然而,由于陆地运动的复杂性,在早期生命中对姿势修复的前庭脊髓贡献仍未得到探索。在这里,我们利用了水下运动的相对简单性来量化在未分化性别的幼虫斑马菌发育过程中失去前庭脊髓神经元的姿势后果。通过在两个时间点进行比较,我们发现后来的前庭神经元病变导致更大的不稳定性。对数千个单独的游泳比赛的分析表明,病变破坏了运动的时机和矫正性,而不会影响游泳运动学,并且这种影响在较老的幼虫中尤为强。使用生成的游泳模型,我们展示了这些干扰如何解释两个时间点的姿势变异性。最后,后期病变破坏了在较旧幼虫中观察到的固定/躯干配位,将前庭脊髓神经元与用于深度导航的姿势控制方案联系起来。由于后来的病变对姿势稳定性更为破坏,因此我们得出结论,前庭脊髓脊髓贡献对幼虫成熟的平衡增加。前庭脊髓神经元在整个脊椎动物中都高度保守;因此,我们建议它们是用于姿势控制发展的发展的底物。