自20世纪40年代问世以来,晶体管就不断改变着我们的生活。作为逻辑门和集成电路(芯片)的核心元件,晶体管无疑在推动计算机、智能手机、平板显示器、物联网乃至所有电子或电气系统的发展方面发挥着无与伦比的作用。过去几十年来,主流晶体管通常由硅材料和金属氧化物等无机半导体制成,有利于实现高迁移率、快速开关速度和优异的稳定性。因此,硅晶体管和金属氧化物半导体场效应晶体管被广泛应用于电子应用。然而,尽管这些晶体管的制造规模要小得多以满足摩尔定律的预测,但它们却非常坚硬,并且几乎接近速度和功耗的基本极限。由于未来对具有机械灵活性/坚固性和低功耗的晶体管的需求,功能材料、设备配置和集成处理技术的创新以促进从刚性设备到柔软、耐用和生物相容性的设备的演变势在必行。1
摘要 Prime editing 是一种近期出现的精确基因组编辑方式,其多功能性为包括靶向基因疗法开发在内的广泛应用提供了前景。然而,其优化和使用的一个突出瓶颈是难以将大型 prime 编辑复合物递送到细胞中。在这里,我们证明将 prime 编辑构建体包装在腺病毒衣壳中可以克服这一限制,从而在转化和非转化的人类细胞中实现强大的基因组编辑,效率高达 90%。使用这种不依赖细胞周期的递送平台,我们发现 prime 编辑活动与细胞复制之间存在直接相关性,并揭示了准确的 prime 编辑事件与不需要的副产物之间的比例可能受靶细胞环境的影响。因此,腺病毒载体颗粒允许在人类细胞中有效地递送和测试 prime 编辑试剂,而与它们的转化和复制状态无关。本文整合的基因传递和基因编辑技术有望帮助研究在众多实验环境中以及最终在体外或体内治疗环境中进行主要编辑的潜力和局限性。简介基于序列可定制的向导 RNA (gRNA) 和 CRISPR 相关 (Cas) 核酸酶的可编程核酸酶是强大的基因组编辑工具 (1,2)。然而,除了脱靶诱变 (3-9) 之外,可编程核酸酶通常会因非法重组过程修复双链断裂 (DSB) 而产生复杂的靶等位基因破坏和大规模基因组重排 (10,11)。因此,最近的基因组编辑发展包括从 DNA 切割发展到基于切口 Cas 蛋白本身 (12–14) 的 DNA 非切割技术,或基于这些与 DNA 修饰部分融合的 RNA 可编程切口酶,例如碱基编辑器和最近的 prime editors (15,16)。Prime 编辑允许安装任何单个碱基对替换以及明确定义的小插入或删除,同时不需要 DSB 或供体 DNA 底物 (15)。Prime editors 由扩展的 gRNA 和 Cas9 H840A 切口酶组成,它们与工程逆转录酶 (RT) 融合,分别命名为 pegRNA 和 PE2 (补充图 S1A)。pegRNA 由 3' 端共价连接到编码目标编辑的 RT 模板和 RT 引物结合位点 (PBS) 的 gRNA 形成。位点特异性基因组 DNA 切口产生 3' 端 DNA 瓣,经 PBS 退火后,在 RNA 模板上引发 RT 介导的 DNA 合成。PE2 和 PE3。DNA 拷贝杂交至互补靶 DNA 后,编辑最终通过连续链解析反应整合到基因组中(补充图 S1B)。Prime 编辑有两种主要方式,即前者系统需要传递 PE2:pegRNA 复合物;后者依赖于这些复合物与传统 gRNA 一起转移。在 PE3 系统中,gRNA 指导的未编辑 DNA 链切口促进了使用编辑链作为修复模板(补充图 S1B)。尽管 Prime 编辑原理具有巨大的潜力和多功能性,但仍存在一些需要识别、仔细评估和解决的特定缺陷。大型的 Prime 编辑核糖核蛋白复合物由 ∼ 125 个核苷酸长的 pegRNA 和由 6.3 kb ORF 编码的 238 kDa 融合蛋白组成,这带来了巨大的生产和交付问题。事实上,生产足够数量的 >100 kDa 蛋白质尤其具有挑战性。此外,尽管病毒载体是最有效的基因组编辑工具递送系统之一 (17),但最常用的平台基于 ∼ 15 nm 腺相关病毒 (AAV) 颗粒,由于其包装容量有限(∼ 4.7 kb)(17),不适合转移全长 Prime 编辑序列。完全病毒基因删除的腺病毒载体(也称为高容量腺病毒载体),以下称为腺载体颗粒 (AdVP),聚集了一组有价值的特征,即; (i) 大包装容量(即高达 36 kb),(ii) 严格的游离性,(iii) 高遗传稳定性;(iv) 容易的细胞趋向性改变和 (v) 高效转导分裂和静止细胞 (17–21)。在这里,我们研究了定制这些 ∼ 90 nm 生物纳米粒子用于全长主要编辑组件的一次性转移的可行性和实用性,并且由于潜在或影响主要编辑结果的细胞过程基本上是未知的,利用后一个特性来研究细胞周期对这种位点特异性 DNA 修饰原理的作用。材料和方法 细胞
本文概述了一项结合人工智能伦理准则和法律即数据方法的研究提案。在法律学术界讨论的软法定义的基础上,本文提出了一种构建人工智能监管格局的方法,并解决了当今“人工智能软法”包含哪些内容的问题。通过采用构建模块方法(结合软法的不同定义组成部分),本文表明,当前人工智能软法的状况取决于人们在国际法上所捍卫的立场。具体而言,本文首先提供了一本完整的代码手册,用于识别不同类型的软法。其次,本文通过分析 40 多个道德准则并根据制定准则的行为者及其可能部署的法律相关影响对初步结果进行聚类,将这本代码手册作为研究提案的概念验证。出现了四种典型的软法类型:国家主义和国际组织软法、过程导向软法、专业知识导向软法和事实上的相关标准软法。这些结果说明了法律作为数据研究提案的预期贡献。
事实上,在非常时期,软实力最有可能弥合分歧并达成一致。遭受武力侵害的民众渴望和平,愿意将软实力作为和解的途径。俄罗斯和乌克兰之间持续的冲突就是一个及时的例子:随着紧张局势升级和外交渠道紧张,软实力为那些感到无可救药地陷入斗争的国家提供了一条出路。当军事力量和地缘政治策略无法达成共识时,软实力就是答案,因为它具有缓和冲突和达成持久和平协议的独特力量。
*1当前Ly Corporation *2 2023 Japan Mobile Service客户满意度研究由J.D.力量。基于4,200的价值载体的回复,在线专用品牌的回答为2,400。https://japan.jdpower.com/en/awards *3 2023网络服务客户满意度调查力量。基于来自1,000多名员工的487家公司的816个回复。https://japan.jdpower.com/en/awards *4 fy2023结果。 国内购物业务的总交易价值,再利用业务,其他(商品),Askul Corporation与BTOB相关的,国内服务,国内数字内容和海外电子商务 *5信息与通信政策研究所,内政和通信部,FY2022 FY2022的调查报告基于信息和通信的使用时间范围,范围与信息的使用时间和信息范围<6月202日(6月202日)趋势,2024年3月25日。https://japan.jdpower.com/en/awards *4 fy2023结果。国内购物业务的总交易价值,再利用业务,其他(商品),Askul Corporation与BTOB相关的,国内服务,国内数字内容和海外电子商务 *5信息与通信政策研究所,内政和通信部,FY2022 FY2022的调查报告基于信息和通信的使用时间范围,范围与信息的使用时间和信息范围<6月202日(6月202日)趋势,2024年3月25日。
锂金属阳极固态电池是电动汽车中能量密度最高的电池,过去十年来,人们在研发方面投入了大量资金。虽然大多数研究都集中在防止锂金属枝晶最终导致电池短路,但这些短路的性质仍然难以捉摸。软短路尤其受到关注,甚至在已发表的数据中也未得到认可。在这里,我们全面概述了复合聚合物电解质固态锂金属电池中软短路的检测和分析,以及对软短路动力学的基本理解。由焦耳热、化学反应性和其他过程驱动的微秒到毫秒时间尺度上的软短路瞬时解除短路限制了人们确定电池是否短路的能力。我们提供了多种实验方法来检测和分析任何类型电池中的软短路,作为所有电池研究人员的资源。
软机器人是为了解决传统机器人在处理人和精密生物物品时的局限性而创建的。[1-4] 软气动执行器(SPA)的工作原理是将调节的正压或负压注入柔性结构内的密封腔中。这些执行器可以弯曲、扭曲、伸展或收缩。[5] 执行器对施加压力的反应取决于腔体的材料和形状。执行器的几何形状或多材料分布可以在更广泛的意义上得到改进。软执行器和机器人的自主设计可能受益于优化壁厚和改变腔体结构。由于软机器人固有的柔顺性,软执行器可以产生相对被动的变形,并根据被处理的物体的形状进行修改。[6] 因此,腔体对弯曲和驱动的影响对于增强软执行器的能力至关重要。此外,有限元法 (FEM) 还可用于改进软机器人,预测其运动,并消除制造后出现的问题。[7] 人们已经采用了各种各样的新开发来提高软机器人的效率,并且已经使用了许多新设计来实现软机器人执行器的多功能性和增强的适应性。[8 – 13]
摘要。本文讨论了 TikTok 的崛起,这是一个相对年轻但非常受欢迎的中国社交网络,用于分享短片原创视频(主要是娱乐性)。到 2021 年底,TikTok 已超过美国搜索引擎谷歌,成为互联网上访问量最大的网站。它每月拥有 10 亿独立访问者,是唯一一家母公司(字节跳动)位于美国境外的十大网站。在本文中,我分析了 TikTok 在俄罗斯互联网领域的存在细节、其逐渐政治化以及该平台在过去两年中面临的问题。2021 年,TikTok 在使用时间方面超过了俄罗斯最受欢迎的社交网络 VKontakte。而且,尽管该服务与俄罗斯当局存在一些摩擦,但仍然没有完全替代它的产品。到目前为止,Yappy(TikTok 的俄罗斯类似产品)看起来根本不像它的严肃竞争对手。本文涵盖了其他国家当局对这个社交网络的担忧,以及 TikTok 总体上如何影响互联网文化。我研究了 TikTok 在年轻人中传播的价值观。在结论中,我提出了一个需要进一步研究的假设,即 TikTok 现在是中华人民共和国超级有效的世界级软实力工具。
2024-tresent:不寻常合作中心(NL)董事会成员2020年至今:Eindhoven技术大学(NL)机械工程系副教授动态与控制科副教授和控制部,复杂和分子系统研究所(ICMS)2016年至今:2016年总计:Soft Obotal Matter Group,Amolf(NL)集团成员(NL)小组成员:NI(NI)当前(NI II),(NI II NI II), Mohanty,Stijn Koppen(博士后),Mannus Schomaker,Alberto Comoretto,Bob Huisman,Elif Kurt,Sergio Picella,Paul Ducella,Paul Ducarme,Katrien van Riet,Nienke Reitsma(Nienke Reitsma) Zou(博士后),Giorgio Oliveri,Agustin Iniguez- Rabago,Luuk van Laake(博士生),Jelle de Vries,Cesare Carissimo,Chartlotte Bording(Re-search Assistans)(搜索助理),Lyndsey Housdon(Artsdon)(艺术家),1次访问Postdoc,2次访问PHD PHD的学生,8 Bachors and Stuciety,8 Bachore and Stuciety stutier,8 Bachore and Stuciery,8 Bachore and 2 barter as Sture,8 Bachelor:2 bardor:2 barter assile&8 Bachelor:29年2月29日。 2011-2012概论(NL)技术顾问:FEMTO工程(NL)顾问,R&D and FEM Engineer 2009-2010:DELFT技术系工业设计系(NL)仓库兼人员经理
软机器人的特征是它们的机械依从性,使其非常适合各种生物启发的应用。但是,需要使用软传感器来维护其在部署过程中的灵活性的挑战,从而可以提高其移动性,能源效率和空间适应性。通过模拟人类感官的结构,策略和工作原理,软机器人可以检测刺激,而无需直接与柔软的无触摸传感器和触觉刺激接触。这导致了软机器人技术领域中值得注意的进步。尽管如此,柔软,无触摸的传感器提供了非侵入性传感和抓地力的优势,而没有与物理接触相关的缺点。因此,近年来,柔软无触摸传感器的普及促进了与人类,其他机器人和周围环境的直观且安全的互动。本评论探讨了无触摸传感和软机器人技术的新兴汇合处,概述了可部署软机器人的路线图,以实现人级的灵活性。