本文提供了对强化学习(RL)深处神经功能近似(RL)的理论研究。此问题设置是由属于该制度的成功深Q-Networks(DQN)框架所激发的。在这项工作中,我们从函数类别和神经网络体系结构(例如宽度和深度)的角度从“线性”制度之外的角度提供了对理论理解深度RL的初步尝试。是具体的,我们专注于基于价值的算法,分别通过BESOV(和Barron)函数空间赋予的深(和两层)神经网络进行了to -greedy探索,旨在近似D -Dimensional特征空间中近似α -Smooth Q -unction。我们证明,随着t发作,缩放宽度m = e O(t d2α + d),而神经网络的深度l = o(log t)的深度RL足以在Besov空间中以sublinear遗憾地学习。此外,对于由Barron空间赋予的两层神经网络,缩放宽度ω(√
量子电子密度功能理论(QEDFT)为探索真实材料的光学腔中复杂的光 - 物质相互作用提供了有希望的途径。与常规密度 - 功能理论类似,Qedft的Kohn-Sham公式需要近似值来实现通常未知的交换相关功能。除了通常的电子电子交换势外,还需要电子 - 光子交换势。最近的电子 - 光子extron-extron-extrance functional [C. Schäfer等。,Proc。natl。学院。SCI。 美国118,e2110464118(2021)],源自非依赖主义的Pauli-Fierz Hamiltonian的运动方程,在跨弱和强耦合方案的一维系统中显示出强大的性能。 然而,它在更高尺寸的电子密度中的性能尚未探索。 在这里,我们考虑了从一维有限的系统以及弱到强的轻度耦合的Qedft功能近似。 电子 - 光子交换近似在Ultrastrong耦合方面可提供出色的结果。 但是,为了确保在较高维度的弱偶联方向上的准确性,我们引入了电子 - 光子交换功能的计算有效的重新归一化因子,该功能是电子 - 光子相关性的一部分。 这些发现将基于光子交换的功能的适用性扩展到了逼真的腔体系统,从而促进了腔Qed(量子 - 电子动力学)材料工程的范围。SCI。美国118,e2110464118(2021)],源自非依赖主义的Pauli-Fierz Hamiltonian的运动方程,在跨弱和强耦合方案的一维系统中显示出强大的性能。然而,它在更高尺寸的电子密度中的性能尚未探索。在这里,我们考虑了从一维有限的系统以及弱到强的轻度耦合的Qedft功能近似。电子 - 光子交换近似在Ultrastrong耦合方面可提供出色的结果。但是,为了确保在较高维度的弱偶联方向上的准确性,我们引入了电子 - 光子交换功能的计算有效的重新归一化因子,该功能是电子 - 光子相关性的一部分。这些发现将基于光子交换的功能的适用性扩展到了逼真的腔体系统,从而促进了腔Qed(量子 - 电子动力学)材料工程的范围。
本信重点关注估计纯态 | ψ ⟩ 的多个可观测量的期望值的任务。在状态准备成本为主导因素的环境中,我们主要量化 Oracle 模型中所需的资源,在该模型中我们计算对状态准备幺正及其逆的调用次数。为了为该成本模型和一般任务提供具体的动机,考虑以下示例,其中我们感兴趣的状态是 Jordan-Wigner 变换下某些二阶量子化电子结构哈密顿量的未知基态。在这种情况下,状态准备步骤预计在某些假设下是可处理的,但相对昂贵,即使使用现代方法(例如,通过应用参考文献 1、2 的基态准备算法结合最先进的哈密顿量块编码技术 [ 3、4 ])。同时,感兴趣的可观测量可能特别简单(例如,费米子约化密度矩阵的元素)。在补充信息第 VI 部分中,我们讨论了状态准备成本不一定占主导地位的情况,以及在我们的方法背景下可能存在的权衡。令 U ψ 表示从 | 0 ⟩ 状态准备 | ψ ⟩ 的幺正态,令 { O j } 为 M 个 Hermitian 算子的集合。为了简化与现有方法的比较,我们在本节中做出额外假设,即 O j 也是幺正态,尽管可以使用基于块编码的技术放宽这一要求 [ 5 ]。与正文一样,我们的目标是尽量减少对 U ψ 和 U † ψ 的调用次数,以获得 M 个期望值 ⟨ ψ | O j | ψ ⟩ 的估计 eoj,使得
量子算法因其可能显著超越传统算法而越来越受欢迎。然而,量子算法在优化问题中的实际应用面临着与现有量子算法训练效率、成本格局形状、输出准确性以及扩展到大规模问题的能力相关的挑战。在这里,我们提出了一种基于梯度的量子算法,用于具有幅度编码的硬件高效电路。我们表明,简单的线性约束可以直接合并到电路中,而无需使用惩罚项对目标函数进行额外修改。我们使用数值模拟在具有数千个节点的完全加权图的 MaxCut 问题上对其进行测试,并在超导量子处理器上运行该算法。我们发现,当应用于具有 1000 多个节点的无约束 MaxCut 问题时,将我们的算法与称为 CPLEX 的传统求解器相结合的混合方法比单独使用 CPLEX 实现了更好的解决方案。这表明混合优化是现代量子设备的主要用例之一。
大量研究表明,参数化人工神经网络 (ANN) 可以有效描述众多有趣的量子多体汉密尔顿量的基态。然而,用于更新或训练 ANN 参数的标准变分算法可能会陷入局部极小值,尤其是对于受挫系统,即使表示足够具有表现力。我们提出了一种并行调节方法,有助于摆脱这种局部极小值。这种方法涉及独立训练多个 ANN,每个模拟由具有不同“驱动器”强度的汉密尔顿量控制,类似于量子并行调节,并且它将更新步骤纳入训练中,允许交换相邻的 ANN 配置。我们研究了两类汉密尔顿量的实例,以证明我们使用受限玻尔兹曼机作为参数化 ANN 的方法的实用性。第一个实例基于置换不变汉密尔顿量,其地形阻碍了标准训练算法,使其逐渐陷入假局部最小值。第二个实例是四个氢原子排列成一个矩形,这是使用高斯基函数离散化的第二个量化电子结构哈密顿量的一个实例。我们在最小基组上研究了这个问题,尽管问题规模很小,但它表现出了假最小值,可以捕获标准变分算法。我们表明,通过量子并行回火来增强训练对于找到这些问题实例基态的良好近似值非常有用。
近似计算是针对容错应用的一种新兴设计范式,例如信号处理和机器学习。在近似计算中,近似电路的面积、延迟或功耗可以通过牺牲其精度来改善。在本文中,我们提出了一种基于节点合并技术并保证错误率的近似逻辑综合方法。我们的方法的思想是用常数值替换内部节点,并合并电路中两个功能相似的节点。我们在一组 IWLS 2005 和 MCNC 基准上进行了实验。实验结果表明,我们的方法最多可以减少面积 80%,平均减少 31%。与最新方法相比,在同样 5% 的错误率约束下,我们的方法加速了 51 倍。
摘要:人脑是一个动态复杂系统,可以用不同的方法进行研究,包括线性和非线性方法。脑电图 (EEG) 分析中广泛使用的非线性方法之一是熵,即系统无序性的测量值。本研究调查了大脑网络,应用近似熵 (ApEn) 测量来评估半球脑电图差异;评估了不同记录会话中 ApEn 数据的可重复性和稳定性。20 名健康成年志愿者接受了 80 次闭眼静息脑电图记录。枕骨区域存在显著差异,左半球的熵值高于右半球,表明根据执行的功能,半球以不同的强度变得活跃。此外,事实证明,在相对较短的 EEG 时期以及 36 名受试者的 1 周间隔时间内,本方法都是可重复且稳定的。非线性方法是研究大脑网络动态的有趣探索。ApEn 技术可能为了解与年龄相关的大脑断开的病理生理过程提供更多见解,并可用于监测药物和康复治疗的影响。
这一问题自然出现在各个科学学科的许多应用中,例如图像压缩 [ 52 ]、潜在语义索引 [ 36 ]、社区检测 [ 48 ]、相关性聚类 [ 17 , 46 ] 和结构化主成分分析,例如参见 [ 38 , 37 ] 及其参考文献。从数学上讲,MaxQP s ( 1 ) 与计算矩阵的 ∞→ 1 范数密切相关。反过来,该范数与割范数密切相关(将 x ∈ {± 1 } n 替换为 x ∈ { 0 , 1 } n ),因为这两个范数之间的差只能为一个常数因子。这些范数是理论计算机科学中的一个重要概念 [ 24 , 3 , 2 ],因为诸如识别图中最大割( MaxCut )之类的问题可以自然地表述为这些范数的实例。这种联系凸显了在最坏的情况下,(1)式的最优解是 NP 难计算的
量子计算机的尺寸和质量正在提高,但噪声仍然很大。误差缓解扩展了噪声设备可以有意义地执行的量子电路的大小。然而,最先进的误差缓解方法很难实现,超导量子比特设备中有限的量子比特连接将大多数应用限制在硬件的原生拓扑中。在这里,我们展示了一种基于机器学习的误差缓解技术,该技术在非平面随机正则图上具有多达 40 个节点的量子近似优化算法 (QAOA)。我们使用具有仔细的决策变量到量子比特映射的交换网络和前馈神经网络来优化多达 40 个量子比特的深度二 QAOA。我们观察到最大图的有意义的参数优化,这需要运行具有 958 个双量子比特门的量子电路。我们的论文强调了在量子近似优化中缓解样本而不仅仅是期望值的必要性。这些结果是朝着在经典模拟无法实现的规模上执行量子近似优化迈出的一步。达到这样的系统规模是正确理解 QAOA 等启发式算法的真正潜力的关键。
过去几年中,量子技术面临的核心挑战之一是寻找近期量子机器的有用应用 1 。尽管在增加量子比特数量和提高其质量 2、3 方面已经取得了长足的进步,但在不久的将来,我们预计可靠门的数量将受到噪声和退相干的限制——即所谓的嘈杂中尺度量子时代。因此,提出了混合量子-经典方法,以充分利用现有的量子硬件并用经典计算对其进行补充。最值得注意的是,量子近似优化算法(QAOA) 4 和变分量子特征求解器(VQE) 5 的发展。这两种算法都使用量子计算机来准备变分状态,其中一些变分状态可能无法通过经典计算获得,但使用经典计算机来更新变分参数。已经进行了大量实验,证明了这些算法的可行性 6 – 8 ,但它们对现实问题的影响仍不清楚。在基于模型的统计推断中,人们经常面临类似的问题。对于简单模型,可以找到似然值并使其最大化,但对于复杂模型,似然值通常是难以处理的 9,10。NMR 波谱就是一个很好的例子。对于应该使用的模型类型有很好的理解(公式 (1)),人们只需要确定适当的参数。然而,计算特定模型的 NMR 波谱需要在指数级大的希尔伯特空间中执行计算,这对经典计算机来说极具挑战性。这一特性是提出将 NMR 作为量子计算平台的最初动机之一。尽管已经证明 NMR 实验中不存在纠缠 12,13,但强相关性使其在经典上难以处理;也就是说,算子 Schmidt 秩呈指数增长,例如,这禁止有效的表示