。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月7日。 https://doi.org/10.1101/2025.02.05.636693 doi:Biorxiv Preprint
荣誉教授:盖伊·巴拉萨德先生,伊夫·巴拉先生,克劳德特·布莱恩德女士,雅克·卡特丁先生,MmeAndréeCremieux,GérardDumenil先生E Sylvie负责上学的Manon Bonifay女士:Nathalie Besnard夫人
我们提出了一些目前未使用的形态发生机制,从进化生物学和转移到进化机器人技术的指南中。(1)提供可突变性突变的DNA模式,通过亲属选择导致可转化的Bauplans的引导。(2)形态发生机制(I)表观遗传细胞系提供功能性细胞类型,并鉴定细胞下降。(ii)基于形态剂扩散的局部解剖坐标,促进了对机械力的复杂表型(III)重塑的可转化遗传参数化(III),促进了比基因组更复杂的良好整合表型的强劲产生。提出了一种方法,用于在进化机器人技术中处理突变性和形态发生机制。这些方法的目的是促进动物肌肉骨骼和皮肤系统的微妙,效率和效率的机器人机制的产生。
分子伴侣介导的自噬 (CMA) 是溶酶体蛋白水解的主要途径,被认为是控制多种细胞功能的关键因素,其缺陷与多种人类疾病有关。迄今为止,由于非四足动物缺乏可识别的溶酶体相关膜蛋白 2A (LAMP2A),而 LAMP2A 是 CMA 的限制和必需蛋白,因此推测这种细胞功能仅限于哺乳动物和鸟类。然而,最近在几种鱼类中发现的表达序列与哺乳动物 LAMP2A 具有高度同源性,这挑战了这种观点,并表明 CMA 在进化过程中出现的时间可能比最初认为的要早。在本研究中,我们全面描述了脊椎动物中 LAMP2 基因的进化史,并证明 LAMP2 确实出现在脊椎动物谱系的根源中。利用青鳉 (Oryzias latipes) 的成纤维细胞系,我们进一步表明,剪接变体 lamp2a 在长期饥饿状态下控制着一种荧光报告基因在溶酶体中的积累,这种荧光报告基因通常用于追踪哺乳动物细胞中的 CMA。最后,为了阐明 Lamp2a 在鱼类中的生理作用,我们生成了该特定剪接变体的敲除青鳉,并发现这些缺陷鱼的碳水化合物和脂肪代谢发生了严重改变,这与肝脏中缺乏 CMA 的小鼠的现有数据一致。总之,我们的数据为鱼类中存在 CMA 样通路提供了第一个证据,并为使用互补遗传模型(如斑马鱼或青鳉)从进化角度研究 CMA 带来了新视角。
进化增强学习(EVORL)已成为一种有前途的方法,可以通过将进化计算(EC)与RL整合(EC)范式来克服传统强化学习(RL)的局限性。但是,基于人群的EC的性质大大提高了计算成本,从而限制了大规模设置中算法设计选择和可扩展性的探索。为了应对这一挑战,我们介绍了Evorl 1,这是针对GPU加速的第一个端到端EVORL框架。该框架对加速器(包括环境模拟和EC过程)执行了整个培训管道,通过矢量化和编译技术利用层次并行性,以实现较高的速度和可扩展性。此设计可以在一台计算机上进行有效培训。In addition to its performance-oriented design, EvoRL offers a comprehensive platform for EvoRL research, encompassing implementations of traditional RL algorithms (e.g., A2C, PPO, DDPG, TD3, SAC), Evolutionary Algorithms (e.g., CMA-ES, OpenES, ARS), and hybrid EvoRL paradigms such as Evolutionary-guided RL (例如,ERL,CEM-RL)和基于群体的自动(例如PBT)。该框架的模块化体系结构和用户友好的接口使研究人员可以无缝整合新组件,自定义算法并进行公平的基准测试和消融研究。该项目是开源的,可在以下网址找到:https://github.com/emi-group/evorl。
摘要:氢进化反应(HER)是绿色能量转变的最突出的电催化反应之一。然而,跨材料和电解质pH的动力学以及高电流密度下的氢覆盖率仍然鲜为人知。在这里,我们研究了她在工业相关的酸性和碱性膜电极组件中的大量纳米颗粒催化剂上的动力学,这些催化剂仅由纯水加湿的气体运行。我们发现了铁三合会(Fe,Ni,Co),造币(AU,Cu,Ag)和铂类金属(IR,PT,PT,PD,RH)之间的不同动力学指纹。重要的是,所应用的偏差不仅改变了激活能(E A),还会改变指数前因子(a)。我们将这些变化解释为界面溶剂的熵变化,由于氢的覆盖率变化,酸和碱之间的差异和熵变化。最后,我们观察到阴离子可以诱导酸中造币金属的巴特勒 - 沃尔默行为。我们的结果为了解她的动力学提供了新的基础,更广泛地强调了迫切需要更新对电催化领域基本概念的共同理解。■简介
抗性的多样性对病原体传播和利用宿主群体的能力提出了挑战 [1–3]。然而,这种宿主多样性如何随时间演变仍不清楚,因为它取决于宿主基因型之间的种内竞争与病原体的共同进化之间的相互作用。在这里,我们通过实验研究了共同进化的噬菌体种群对细菌 CRISPR 免疫跨空间和时间多样化的影响。我们证明,共同进化产生的 10 个负频率依赖性选择是一种强大的力量,它能维持宿主抗性多样性并选择宿主中的新抗性突变。我们还发现,宿主进化是由不同宿主基因型之间竞争能力的不对称所驱动的。即使最适合的宿主基因型成为进化噬菌体的优先攻击对象,但它们也常常通过获得新的 CRISPR 免疫力而逃脱灭绝。总之,这些波动的选择压力维持了多样性,但并非通过保留预先存在的宿主组成来实现的。相反,我们反复观察到来自每个种群中适应能力最强的宿主的新抗性基因型的引入。这些结果强调了竞争对宿主-病原体共同进化的瞬时动态的重要性。
在分子水平上理解竞争性抑制对于揭示酶-抑制剂相互作用的动力学和预测抗性突变的进化结果至关重要。在本研究中,我们提出了一个框架,将竞争性抑制与炼金术自由能扰动 (FEP) 计算联系起来,重点关注大肠杆菌二氢叶酸还原酶 (DHFR) 及其被甲氧苄啶 (TMP) 抑制的情况。使用热力学循环,我们将实验测得的结合常数 (K i 和 K m ) 与野生型和突变型 DHFR 相关的自由能差异联系起来,平均误差为 0.9 kcal/mol,从而深入了解 TMP 抗性的分子基础。我们的研究结果强调了局部构象动力学在竞争性抑制中的重要性。DHFR 突变对底物和抑制剂结合亲和力的影响不同,从而影响 TMP 选择压力下的适应度景观。我们的 FEP 模拟表明,抗性突变通过特定的结构和/或动力学效应稳定抑制剂结合或底物结合状态。这些效应的相互作用在某些情况下显示出显著的上位性。单独评估底物和抑制剂结合的能力提供了有价值的见解,从而可以更精确地解释突变效应和上位性相互作用。此外,我们确定了 FEP 模拟中的关键挑战,包括由电荷改变突变和长距离变构效应引起的收敛问题。通过整合计算和实验数据,我们提供了一种有效的方法来预测抗性突变的功能影响及其对进化适应度景观的贡献。这些见解为构建强大的突变扫描方案和设计更有效的抗耐药细菌菌株治疗策略铺平了道路。
(> 11 百万年前),其特点是 Athila 和 CRM 元素贡献相等(模式:分别为 467 和 353 TE)。这些发现表明这些物种的着丝粒周围相对稳定,较旧的 CRM 副本随后被 Athila 元素所取代。相比之下,B. prealpina 和 B. varia 显示出更高的 CRM 序列周转率,许多旧的 CRM 副本被较新的副本所取代。在分布分散的 Athila 家族中也观察到了类似的模式。最后,我们扩展了
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。