我们评估了量子计算在两个基本查询优化问题(连接顺序优化和多查询优化 (MQO))上的适用性。我们分析了目前基于门的量子系统和量子退火器(两种目前市面上可用的架构)上可以解决的问题维度。首先,我们评估了基于门的系统在 MQO 上的使用情况,MQO 之前已通过量子退火解决。我们表明,与传统计算相反,不同的架构需要进行复杂的调整。此外,我们提出了一种用于连接顺序问题的多步骤重新表述,使其可以在当前量子系统上解决。最后,我们系统地评估了我们对基于门的量子系统和量子退火器的贡献。通过这样做,我们确定了当前局限性的范围,以及量子计算技术对数据库系统的未来潜力。
一般命令第 1 号主题:在高级负责军官 (SRO) 当局的授权下,针对威斯巴登美国驻军司令部 (USAG-W) 内人员的 COVID-19 公共卫生措施。北约部队地位协定 (SOFA) 第 11 条,1951 年 6 月 19 日;1951 年 6 月 19 日;北约部队地位协定补充协议第 54 条,1998 年 3 月 29 日;10 USC 第 47 章(统一军事司法法典);HQDA 一般命令第 2008-01 号,一般军事法庭召集机构,2008 年 3 月 11 日;欧洲军队条例 (AER) 10-5,组织和职能,2019 年 12 月 5 日;AER 27-9,平民不当行为,2011 年 11 月 22 日; AER 27-10,军事司法和法律服务,2014 年 8 月 19 日。适用性。本一般命令适用于驻扎、分配、附属和/或出现在 USAG-W SRO 责任区内的军事设施的所有个人,包括士兵、国防部和陆军部文职人员、家庭成员、其他附属人员以及在 USAG-W 军事设施内或寻求进入这些设施的人。本一般命令取代 2022 年 4 月 1 日修订的一般命令 1 号 (GO-1),直至另行通知。1. 军事目的和必要性声明。本一般命令确定了有损于 USAG-W 内所有人员的良好秩序、纪律、战备、健康和安全的行为,以防止 COVID-19 的传播。限制活动对于保持任务战备状态以及 USAG-W 附属士兵、平民和家属的健康至关重要。
a 英国伦敦大奥蒙德街医院基金会、NIHR 大奥蒙德街医院生物医学研究中心、大奥蒙德街儿童健康研究所、伦敦大学学院和大奥蒙德街医院信托基金会杜博维茨神经肌肉中心 b 美国马萨诸塞州波士顿分析集团公司 c 美国马萨诸塞州剑桥协作轨迹分析项目 d 比利时鲁汶大学医院儿童神经病学部 e 美国马萨诸塞州伍斯特马萨诸塞大学医学院儿科系 f 美国俄亥俄州辛辛那提辛辛那提儿童医院医疗中心和美国俄亥俄州辛辛那提辛辛那提大学医学院 g 意大利罗马天主教大学 Fondazione Policlinico Gemelli IRCCS 儿科神经病学系 h 英国牛津神经肌肉中心、英国牛津大学儿科系和比利时列日神经肌肉中心、CHU 和列日大学儿科分部 i 莱顿大学医学中心荷兰莱顿 j 英国纽卡斯尔大学约翰沃尔顿肌肉萎缩症研究中心 k 荷兰奈梅亨拉德堡德大学奈梅亨医学中心、唐德斯神经科学中心、康复系 l 美国加利福尼亚州萨克拉门托加利福尼亚大学戴维斯分校物理医学与康复系及儿科系
摘要:中型到大型应用的能源存储是平衡需求和供应周期的重要方面。水力发电与抽水蓄能相结合是一种古老但有效的供需缓冲,它取决于淡水资源的可用性和建造高架水库的能力。本文回顾了水力发电和抽水蓄能的技术可行性及其在世界各地的地理分布。本文还重点介绍了中东和北非 (MENA) 的可用容量以及过去和未来的发展和扩张。本文讨论了阿拉伯联合酋长国 (UAE) 哈塔地区正在进行的一个项目,该项目有一个适合用于抽水蓄能应用的水库。一旦该项目于 2024 年投入使用,预计将每年提供 2.06 TWh 的电力,帮助阿联酋实现到 2030 年能源结构中可再生能源占 25% 的目标。这些结果是通过使用 EnergyPLAN 软件预测利用各种能源资源来应对 2030 年预期约 38 TWh 的需求的效果而获得的。
蒙古的地理位置对其外交政策的制定和实施施加了一定的限制。蒙古与两个超级大国——俄罗斯和中国——接壤,因此必须将这些国家视为其政策的优先领域。要了解蒙古当前外交政策的趋势,了解该国的历史很重要。本文探讨了蒙古战略和外交政策的演变,特别关注了 1990 年民主革命后的时期。自蒙古帝国以来,历史环境首次为蒙古提供了独立推行外交政策的机会。这项政策被称为“第三邻国政策”,旨在发展与没有共同边界的国家的关系,以帮助维护其独立、国家安全和主权。此外,本文还确定了蒙古如何在平衡与俄罗斯、中国和“第三邻国”的三个双边外交关系方面维持和改善当前关系水平。此外,它还为其他小国如何与世界其他国家和国际组织合作以保护自己的国家安全、主权和独立提供了宝贵的信息。
AK-antiVEGF 是一种基因治疗候选药物,处于临床前开发阶段,可用于治疗前庭神经鞘瘤 (VS) 患者。先前发布的全身性 VEGF 抑制剂治疗临床试验数据显示,由于 NF2 基因突变,部分 VS 患者 VS 肿瘤体积缩小,听力改善。然而,相关毒性可能会限制长期全身性使用 VEGF 抑制剂作为 VS 的可行治疗选择。在非人类灵长类动物 (NHP) 中,耳蜗内注射 AK-antiVEGF 后,抗 VEGF 蛋白的局部表达强劲且耐受性良好,这是一种用于评估给药参数的解剖学相关模型。两项评估多剂量的非临床研究的数据表明,全身性暴露于抗 VEGF 蛋白是有限的。计算模型支持已报道的生物活性抗 VEGF 蛋白水平扩散到早期 VS 肿瘤的典型位置的潜力。总之,这些数据支持未来临床开发 AK-antiVEGF 以用于潜在治疗 VS。
无人驾驶飞机系统 (UAS) 为新时代的专业任务带来了巨大希望,包括个人空中交通、货运飞行操作、航空勘测、检查、消防等。预期的市场增长是巨大的。要释放其可扩展性和现有优势,需要一个人同时监督多个航班,专注于多飞行器任务管理,并将其在控制飞机飞行路径方面的主动作用移交给自主系统。实现这些可扩展性优势的关键是最低限度地访问国家空域系统 (NAS),这对自动驾驶 UAS 飞机操作提出了一些独特的挑战。这些包括与现有空域结构和操作兼容的要求,包括目视飞行规则 (VFR) 和仪表飞行规则 (IFR),这两者都不是为满足 UAS 的独特需求和能力而开发的。
无人机系统 (UAS) 为新时代的专业任务带来了巨大希望,包括个人空中运输、货运飞行操作、航空勘测、检查、消防等。预期市场增长巨大。要释放其可扩展性和现有优势,需要人类同时监督多个航班,专注于多飞行器任务管理,并将其在控制飞机飞行路径方面的主动作用移交给自主系统。实现这些可扩展性优势的关键是以最低限度的限制访问国家空域系统 (NAS),这对自动驾驶 UAS 飞机操作提出了一些独特的挑战。其中包括需要与现有空域结构和操作兼容,包括目视飞行规则 (VFR) 和仪表飞行规则 (IFR),这两者都不是为了满足 UAS 的独特需求和能力而开发的。
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,