自然界中发现的大部分复杂性和多样性都是由非线性现象驱动的,这对于非线性动力学与大脑之间的关系也是如此。计算机模拟表明,包括大脑在内的许多生物系统都表现出近乎混乱的行为。非线性动力学理论已成功地从生物物理学的角度解释了大脑功能,统计物理学领域在理解大脑连接和功能方面继续取得实质性进展。本研究使用生物物理非线性动力学方法深入研究复杂的大脑功能连接。我们的目标是发现高维和非线性神经信号中隐藏的信息,希望提供一种有用的工具来分析功能复杂网络中的信息转换。通过利用相图和模糊递归图,我们研究了复杂大脑网络功能连接中的潜在信息。我们的数值实验包括合成线性动力学神经时间序列、物理上真实的非线性动力学模型和生物物理上真实的神经质量模型,结果表明,相图和模糊递归图对神经动力学的变化高度敏感,并且它们还可用于根据结构连接预测功能连接。此外,结果表明,神经元活动的相轨迹编码低维动力学,相图形成的极限环吸引子的几何特性可用于解释神经动力学。此外,我们的结果表明,相图和模糊递归图可以使用真实的 fMRI 数据捕捉大脑中的功能连接,并且这两个指标都能够捕捉和解释特定认知任务期间的非线性动力学行为。总之,我们的研究结果表明,相图和模糊递归图可以作为非常有效的功能连接描述符,为大脑中的非线性动力学提供有价值的见解。
推荐引用 推荐引用 Hembree, Bradley C.,“使用非递归和递归刚体动力学的高效系留气球模型公式”(2010 年)。学位论文。260。https://louis.uah.edu/uah-dissertations/260
摘要:在强度不断增加的运动过程中,人体会根据实际需求通过不同的机制转换能量。人体的能量利用可分为三个阶段,每个阶段的特点是不同的代谢过程,并由两个阈值点分隔,即有氧阈值 (AerT) 和无氧阈值 (AnT)。这些阈值在确定的运动强度 (工作量) 值时发生,并且会因人而异。它们被视为运动能力的指标,可用于个性化体育活动计划。它们通常通过通气或代谢变量检测,需要昂贵的设备和侵入性测量。最近,人们特别关注 AerT,这是一个特别适用于超重和肥胖人群的参数,可用于确定减肥和增强体质的最佳运动强度。本研究旨在提出一种新程序,使用复发分析 (RQA) 自动识别 AerT,该程序仅依赖心率时间序列,该时间序列是从一群年轻运动员在自行车功率计上进行亚最大增量运动测试 (心肺运动测试, CPET) 期间获得的。我们发现,确定性最小值(根据时期复发量化 (RQE) 方法计算出的 RQA 特征)可识别发生一般代谢转变的时间点。在这些转变中,基于确定性最小值的最大凸度的标准可以检测到第一个代谢阈值。普通最小积回归分析表明,RQA 估计的与 AerT 相对应的耗氧量 VO 2 、心率 (HR) 和工作量的值与 CPET 估计的值高度相关 (r > 0.64)。 HR 和 VO2 的平均百分比差异均小于 2%,工作负荷的平均百分比差异小于 11%。AerT 时 HR 的技术误差小于 8%;AerT 时所有变量的组内相关系数值均适中(≥ 0.66)。因此,该系统是一种仅依靠心率时间序列检测 AerT 的有用方法,一旦针对不同活动进行了验证,将来就可以轻松应用于从便携式心率监测器获取数据的应用中。
* 通讯作者:sachin.viet@gmail.com,电话:+91-9268793832 摘要 - “癫痫”是一种常见的神经系统大脑疾病,会影响人类生命的任何阶段。全世界约有 1-2% 的人口受到这种主要慢性疾病的影响。在癫痫诊断的几种应用中,脑电图 (EEG) 信号是早期发现癫痫发作的最重要工具。根据癫痫发作,脑电图 (EEG) 信号可分为癫痫性和非癫痫性。最近的研究主要通过两种方法进行了预测和分析癫痫发作的各种可能性:使用信号处理的传统方法和基于深度学习的方法。因此,需要找到一种合适且可靠的方法来检测和分类 EEG 信号中的癫痫发作。由于 EEG 信号本质上非常随机且非线性,因此我们需要一种非线性技术来检查 EEG 信号,从而能够对不同的 EEG 信号(即癫痫信号和非癫痫信号)进行分类。在我们的论文中,我们提出了一种非线性技术,使用递归量化分析方法(缩写为 RQA)来提取 EEG 信号的特征,其参数来自递归图 (RP)。在分析和分类时间序列时,大多数时候会从 EEG 时间序列中提取一些已识别的统计特征集,并将其作为机器学习分类器的输入。我们提出的方法找到了一种使用深度神经网络 (DNN) 对 EEG 信号时间序列进行分类的新颖且合适的方法。因此,使用递归图将 EEG 信号转换为 RGB 图像。我们使用预训练的 DNN 作为 ResNet-50,这是一个深度为 50 层的卷积神经网络,用于从递归图中提取特征。然后我们使用多个机器学习分类器将信号分类为癫痫和非癫痫,并指出 SVM 的准确率最高。本研究论文表明,可以使用深度学习算法通过脑电图信号利用复发图诊断癫痫,这种算法通常用于图像分类挑战。关键词-癫痫;脑电图信号;复发图;深度神经网络;成像时间序列数据 1. 简介大脑是人体的重要器官,负责监测和控制代谢过程。癫痫、缺血性中风和脑肿瘤等脑部疾病可能会损害正常的生物功能 [1]。神经系统疾病影响从婴儿到老年人的所有年龄段的人。这些疾病有几种形式,癫痫在受其影响的人数最多方面位居第四
摘要 — 尽管不断进行研究,但基于脑机接口 (BCI) 的通信方法尚不是一种有效可靠的手段,严重残疾的患者可以依赖这种手段。迄今为止,大多数基于运动想象 (MI) 的 BCI 系统使用传统的频谱分析方法来提取判别特征并对相关的基于脑电图 (EEG) 的感觉运动节律 (SMR) 动态进行分类,这导致性能相对较低。在本研究中,我们调查了使用递归量化分析 (RQA) 和基于复杂网络理论图的特征提取方法作为提高 MI-BCI 性能的新方法的可行性。这些特征植根于混沌理论,探索了 MI 神经反应背后的非线性动力学,作为对 MI 进行分类的新信息维度。方法:将六名健康参与者执行 MI-Rest 任务时记录的 EEG 时间序列投射到多维相空间轨迹中,以构建相应的递归图 (RP)。从 RP 中提取了八个基于非线性图的 RQA 特征,然后通过 5 倍嵌套交叉验证程序与经典光谱特征进行比较,以使用线性支持向量机 (SVM) 分类器进行参数优化。结果:与经典特征相比,基于非线性图的 RQA 特征能够将 MI-BCI 的平均性能提高 5.8%。意义:这些发现表明,RQA 和复杂网络分析可以为 EEG 信号的非线性特征提供新的信息维度,从而提高 MI-BCI 性能。
摘要。情感识别是情感计算的一个分支,在过去几十年中引起了极大的关注,因为它可以实现更自然的脑部计算机界面系统。脑电图(EEG)已被证明是情绪识别的有效方式,可以跟踪和记录用户情感状态,尤其是对于原始的情感事件(例如唤醒和价值)。尽管已经显示出大脑信号与情绪状态相关,但提出的模型的有效性在某种程度上受到限制。挑战是提高准确性,同时适当提取有价值的功能可能是成功的关键。本研究提出了一个基于结合分形维度和递归特征消除方法的框架,以增强基于EEG的情绪识别的准确性。要提取和使用基于频谱的分形尺寸和基于光谱的特征,以更准确地识别。递归功能消除将用作特征选择方法,而情绪的分类将由支持向量机(SVM)算法进行。将使用广泛使用的公共数据库测试所提出的框架,与其他研究相比,结果有望证明其准确性和鲁棒性更高。这项研究的贡献主要是关于改善基于脑电图的情绪分类精度。潜在的限制对结果的通用性可能是不同的,因为不同的脑电图数据集可能会为同一框架产生不同的结果。因此,尝试不同的EEG数据集并测试替代特征选择方案对于将来的工作非常有趣。
请注意,这些可变大小的结构可以出现在输入级别、输出级别或两者。例如,翻译问题可以看作是序列到序列的问题。输入和输出序列不必具有相同的长度。蛋白质二级结构的预测可以看作是从具有 20 个字母的字母表(每个字母代表一种天然存在的氨基酸)到具有三个字母的字母表(对应于三个主要的二级结构类别(α-螺旋、β-链和卷曲))的翻译问题。在这种特殊情况下,输入序列和输出序列具有相同的长度。在解析问题中,输入是序列,输出是树。在蛋白质接触图预测中,输入是序列,输出是矩阵,依此类推。在所有这些问题中,标签可以存在于节点上、边缘上或两者上。有机化学中的小分子可以在节点上具有与原子类型(例如 C,N,O,H)相对应的标签,也可以在边缘上具有与键类型(例如单键,双键,三键和芳香键)相对应的标签。
在本论文中,我们提出了一种预测事件发生时间的新模型:威布尔事件时间 RNN。这是一个用于预测下一个事件发生时间的时间序列的简单框架,适用于我们遇到连续或离散时间、右删失、重复事件、时间模式、随时间变化的协变量或不同长度的时间序列中的任何一个或所有问题时。所有这些问题在客户流失、剩余使用寿命、故障、尖峰训练和事件预测中经常遇到。所提出的模型估计下一个事件发生时间的分布具有离散或连续威布尔分布,其参数是递归神经网络的输出。该模型使用生存分析中常用的特殊目标函数(删失数据的对数似然损失)进行训练。威布尔分布足够简单,可以避免稀疏性,并且可以轻松地进行正则化以避免过度拟合,但仍然具有足够的表现力来编码诸如增加、平稳或减少风险等概念,并且可以在允许的情况下收敛到点估计。预测的威布尔参数可用于预测下一个事件时间的预期值和分位数。它还导致未来风险的自然 2d 嵌入,可用于监控和探索性分析。我们使用通用的审查数据框架来描述 WTTE-RNN,该框架可以轻松地与其他分布一起扩展并适用于多变量预测。我们表明,常见的比例风险模型和威布尔加速故障时间模型是 WTTE-RNN 的特殊情况。所提出的模型在具有不同程度的审查和时间分辨率的模拟数据上进行了评估。我们将其与二元固定窗口预测模型和处理审查数据的简单方法进行了比较。该模型优于简单方法,并且被发现具有许多优势和与二元固定窗口 RNN 相当的性能,而无需指定窗口大小和在更多数据上进行训练的能力。应用于 CMAPSS 数据集以进行模拟喷气发动机的 PHM 运行至故障得到了有希望的结果。