其中 {| i ⟩} 是外部“硬币”系统 c 的状态希尔伯特空间的正交基,子程序 P i 的选择根据“硬币”空间的基态 | i ⟩ 进行。 (2) 和 (3) 的一个根本区别是, (3) 的控制流是量子的,因为量子“硬币” c 的基态可以叠加,因此 c 携带的是量子信息而不是经典信息(有关量子控制流的更多信息,参见 [13] 第 6 章和 [12])。基于测量的 case 语句的递归方案 (2) 已经在文献中得到研究,并在 [13] 中被称为递归量子编程,因为递归沿着经典控制流执行。在本文中,我们考虑一种带有量子 case 语句的递归新方案 (3)。这种量子递归方案与前一种方案的一个重要区别在于:在该方案中,过程标识符可以出现在形式 (3) 的量子案例语句的不同分支中,因此对它们的递归调用可以以量子并行的方式发生,作为执行路径的叠加。因此,我们将新方案称为量子递归编程,因为执行是沿着量子控制流执行的。正如将在一系列示例中展示的那样,可以定义一类重要的大型量子门,并且可以在新的量子递归方案中方便而优雅地描述量子算法。本文的结构如下。作为定义量子递归的基础,我们在第二部分中引入了量子阵列。然后,我们在几个方面介绍了我们的量子递归程序
沥青路面递归伪疲劳开裂损伤模型 作者:Kenneth Adomako Tutu 这篇论文提交给奥本大学研究生院,部分满足哲学博士学位的要求 阿拉巴马州奥本 2018 年 8 月 4 日 经土木工程 Brasfield 和 Gorrie 教授、主席 David H. Timm 批准 J. Brian Anderson,土木工程副教授 Carolina M. Rodezno,国家沥青技术中心助理研究教授 Fabricio Leiva-Villacorta,国家沥青技术中心助理研究教授 April E. Simons,建筑科学助理教授
摘要:在强度不断增加的运动过程中,人体会根据实际需求通过不同的机制转换能量。人体的能量利用可分为三个阶段,每个阶段的特点是不同的代谢过程,并由两个阈值点分隔,即有氧阈值 (AerT) 和无氧阈值 (AnT)。这些阈值在确定的运动强度 (工作量) 值时发生,并且会因人而异。它们被视为运动能力的指标,可用于个性化体育活动计划。它们通常通过通气或代谢变量检测,需要昂贵的设备和侵入性测量。最近,人们特别关注 AerT,这是一个特别适用于超重和肥胖人群的参数,可用于确定减肥和增强体质的最佳运动强度。本研究旨在提出一种新程序,使用复发分析 (RQA) 自动识别 AerT,该程序仅依赖心率时间序列,该时间序列是从一群年轻运动员在自行车功率计上进行亚最大增量运动测试 (心肺运动测试, CPET) 期间获得的。我们发现,确定性最小值(根据时期复发量化 (RQE) 方法计算出的 RQA 特征)可识别发生一般代谢转变的时间点。在这些转变中,基于确定性最小值的最大凸度的标准可以检测到第一个代谢阈值。普通最小积回归分析表明,RQA 估计的与 AerT 相对应的耗氧量 VO 2 、心率 (HR) 和工作量的值与 CPET 估计的值高度相关 (r > 0.64)。 HR 和 VO2 的平均百分比差异均小于 2%,工作负荷的平均百分比差异小于 11%。AerT 时 HR 的技术误差小于 8%;AerT 时所有变量的组内相关系数值均适中(≥ 0.66)。因此,该系统是一种仅依靠心率时间序列检测 AerT 的有用方法,一旦针对不同活动进行了验证,将来就可以轻松应用于从便携式心率监测器获取数据的应用中。
* 通讯作者:sachin.viet@gmail.com,电话:+91-9268793832 摘要 - “癫痫”是一种常见的神经系统大脑疾病,会影响人类生命的任何阶段。全世界约有 1-2% 的人口受到这种主要慢性疾病的影响。在癫痫诊断的几种应用中,脑电图 (EEG) 信号是早期发现癫痫发作的最重要工具。根据癫痫发作,脑电图 (EEG) 信号可分为癫痫性和非癫痫性。最近的研究主要通过两种方法进行了预测和分析癫痫发作的各种可能性:使用信号处理的传统方法和基于深度学习的方法。因此,需要找到一种合适且可靠的方法来检测和分类 EEG 信号中的癫痫发作。由于 EEG 信号本质上非常随机且非线性,因此我们需要一种非线性技术来检查 EEG 信号,从而能够对不同的 EEG 信号(即癫痫信号和非癫痫信号)进行分类。在我们的论文中,我们提出了一种非线性技术,使用递归量化分析方法(缩写为 RQA)来提取 EEG 信号的特征,其参数来自递归图 (RP)。在分析和分类时间序列时,大多数时候会从 EEG 时间序列中提取一些已识别的统计特征集,并将其作为机器学习分类器的输入。我们提出的方法找到了一种使用深度神经网络 (DNN) 对 EEG 信号时间序列进行分类的新颖且合适的方法。因此,使用递归图将 EEG 信号转换为 RGB 图像。我们使用预训练的 DNN 作为 ResNet-50,这是一个深度为 50 层的卷积神经网络,用于从递归图中提取特征。然后我们使用多个机器学习分类器将信号分类为癫痫和非癫痫,并指出 SVM 的准确率最高。本研究论文表明,可以使用深度学习算法通过脑电图信号利用复发图诊断癫痫,这种算法通常用于图像分类挑战。关键词-癫痫;脑电图信号;复发图;深度神经网络;成像时间序列数据 1. 简介大脑是人体的重要器官,负责监测和控制代谢过程。癫痫、缺血性中风和脑肿瘤等脑部疾病可能会损害正常的生物功能 [1]。神经系统疾病影响从婴儿到老年人的所有年龄段的人。这些疾病有几种形式,癫痫在受其影响的人数最多方面位居第四
CRISPR-CAS诱导的同源指导修复(HDR)可以通过外源供体模板安装广泛的精确基因组修饰。然而,HDR在人类细胞中的应用通常受到差异差的效率阻碍,这是由于偏爱易于容易产生的途径而产生短插入和缺失的途径。在这里,我们描述了递归编辑,这是一种HDR改进策略,该策略有选择地重新制定不希望的Indel结果,以创造更多的机会来生产所需的HDR等位基因。我们介绍了一个名为Retarget的软件工具,该工具可以使递归编辑实验的合理设计。在单个编辑反应中,使用重编设计的指南RNA,递归编辑可以同时提高HDR效率并减少不希望的indels。我们还利用重新定位来生成数据库,以特别有效地递归编辑位点,以内源性标记蛋白质并靶向致病性突变。递归编辑构成了一种易于使用的方法,而没有潜在的细胞操作,也很少增加实验负担。
自然界中发现的大部分复杂性和多样性都是由非线性现象驱动的,这对于非线性动力学与大脑之间的关系也是如此。计算机模拟表明,包括大脑在内的许多生物系统都表现出近乎混乱的行为。非线性动力学理论已成功地从生物物理学的角度解释了大脑功能,统计物理学领域在理解大脑连接和功能方面继续取得实质性进展。本研究使用生物物理非线性动力学方法深入研究复杂的大脑功能连接。我们的目标是发现高维和非线性神经信号中隐藏的信息,希望提供一种有用的工具来分析功能复杂网络中的信息转换。通过利用相图和模糊递归图,我们研究了复杂大脑网络功能连接中的潜在信息。我们的数值实验包括合成线性动力学神经时间序列、物理上真实的非线性动力学模型和生物物理上真实的神经质量模型,结果表明,相图和模糊递归图对神经动力学的变化高度敏感,并且它们还可用于根据结构连接预测功能连接。此外,结果表明,神经元活动的相轨迹编码低维动力学,相图形成的极限环吸引子的几何特性可用于解释神经动力学。此外,我们的结果表明,相图和模糊递归图可以使用真实的 fMRI 数据捕捉大脑中的功能连接,并且这两个指标都能够捕捉和解释特定认知任务期间的非线性动力学行为。总之,我们的研究结果表明,相图和模糊递归图可以作为非常有效的功能连接描述符,为大脑中的非线性动力学提供有价值的见解。
我们应该如何比较语言模型(LMS)和人类的能力?在本文中,我从比较心理学到这些比较中的挑战。i的重点是案例研究:递归嵌套的语法结构的处理。先前的工作表明,LMS无法尽可能可靠地处理这些结构。但是,为人类提供了指令和大量培训,而LMS则进行了零射击。i因此更加匹配评估。提供一个简单提示的大型LM(比人类培训的含量要少得多),即使在更深厚的嵌套条件下,LMS也比人类测试更深切的条件。此外,提示的效果对提示中使用的特定结构和词汇量是强大的。最后,重新分析现有的人类数据表明,人类最初可能不会在困难的结构上执行以上机会。因此,当对比较评估时,大的LMS确实可以像人类一样可靠地递归嵌套的语法结构。此案例研究强调了评估方法中的差异如何混淆语言模型和人类的比较。我通过反映了比较人类和模型能力的更广泛挑战,并突出了评估认知模型和基础模型之间的重要区别。
摘要 — 尽管不断进行研究,但基于脑机接口 (BCI) 的通信方法尚不是一种有效可靠的手段,严重残疾的患者可以依赖这种手段。迄今为止,大多数基于运动想象 (MI) 的 BCI 系统使用传统的频谱分析方法来提取判别特征并对相关的基于脑电图 (EEG) 的感觉运动节律 (SMR) 动态进行分类,这导致性能相对较低。在本研究中,我们调查了使用递归量化分析 (RQA) 和基于复杂网络理论图的特征提取方法作为提高 MI-BCI 性能的新方法的可行性。这些特征植根于混沌理论,探索了 MI 神经反应背后的非线性动力学,作为对 MI 进行分类的新信息维度。方法:将六名健康参与者执行 MI-Rest 任务时记录的 EEG 时间序列投射到多维相空间轨迹中,以构建相应的递归图 (RP)。从 RP 中提取了八个基于非线性图的 RQA 特征,然后通过 5 倍嵌套交叉验证程序与经典光谱特征进行比较,以使用线性支持向量机 (SVM) 分类器进行参数优化。结果:与经典特征相比,基于非线性图的 RQA 特征能够将 MI-BCI 的平均性能提高 5.8%。意义:这些发现表明,RQA 和复杂网络分析可以为 EEG 信号的非线性特征提供新的信息维度,从而提高 MI-BCI 性能。
在本文中,我们着重于在不确定的动态环境中缩小 - 摩尼斯模型预测控制(MPC)的问题。我们考虑控制一个确定性的自主系统,该系统在其任务过程中与无法控制的随机代理相互作用。采用保形预测中的工具,现有作品为未知代理的传统提供了高信心的预测区域,并将这些区域集成到MPC适当安全约束的设计中。尽管保证了闭环轨迹的概率安全性,但这些约束并不能确保在整个任务的整个过程中相应的MPC方案的可行性。We propose a shrinking-horizon MPC that guarantees recursive feasibility via a gradual relaxation of the safety constraints as new prediction regions become available online.这种放松可以从所有可用的预测区域集合最少限制性预测区域保存安全限制。在与艺术状态的比较案例研究中,我们从经验上表明,我们的方法导致更严格的预测区域并验证MPC方案的递归可行性。关键字:MPC,动态环境,共形预测