6.0 一般规定 18 6.1 培训与资格 18 6.1.1 雇主责任 18 6.1.2 工人责任 18 6.2 电气事故报告 18 6.3 危险电气情况报告 18 6.4 安全接近距离 19 6.4.1 授权人员和受过指导人员的安全接近距离 19 6.4.2 普通人员的安全接近距离 19 6.4.3 靠近电气设备操作设备的安全接近距离 21 6.4.4 靠近电气设备脚手架的安全接近距离 22 6.4.5 地下电缆附近挖掘的安全接近距离和做法 22 6.4.6 接近裸露带电导体的绝对限度 23 6.4.7 无人机和遥控飞机系统的安全接近距离 23 6.4.8 非开挖挖掘方法距离 23 6.4.9 结构附近的挖掘 23 6.5 通信 23 6.6 紧急条件 24 6.7 坠落的导线 24 6.7.1 制作安全的坠落低压导线 24 6.7.2 制作安全的坠落高压导线 25 6.8 安全设备 25 6.8.1 安全设备人员的职责 25 6.8.2 防护服 26 6.8.3 安全帽 26 6.8.4 安全带 27 6.8.5 低压绝缘手套 27 6.8.6 眼睛/面部保护 29 6.8.7 低压探测器 29 6.8.8 低压指示装置(电压棒) 29 6.8.9 梯子 29
医科大学。Dena Journal,5(3 和 4),28-37。Hunker,IK(2014)。酒店业的工作生活质量——临时工的视角。哥本哈根商学院。Ilkhanizadeh,S.,和 Karatepe,OM(2017)。对航空业企业社会责任后果的考察:工作投入、职业满意度和发声行为。航空运输管理杂志,59,8-17。Jayakumar,A.,和 Kalaiselvi,K.(2012)。工作生活质量——概述。国际市场营销、金融服务和管理研究杂志,1(10),140-151。Kaiser,HF(1991)。主成分的系数 alpha 和 Kaiser-Guttman 规则。心理报告,68(3),855-858。 Krueger, P.、Brazil, K.、Lohfeld, L.、Edward, HG、Lewis, D. 和 Tjam, E. (2002)。组织特定的工作满意度预测因素:加拿大多站点工作生活质量横断面调查结果。检索自 http://www.biomedcentral.com/content/pdf/1472-6963-2-6.pdf Lau, RSM (2000)。QWL 和绩效:对服务利润链模型中两个关键要素的临时调查。国际服务业管理杂志,11 (5),422-437。Maurino, DE、Reason, J.、Johnston, N. 和 Lee, RB (2017)。超越航空人为因素:高科技系统中的安全性。纽约:劳特利奇。Mirsepasi, N. (2005)。战略人力资源管理和工作关系(展望全球化)。德黑兰:Mir 出版。 Nekouei, MH、Othman, M. Bt.、Masud, J. Bt. 和 Ahmad, A. Bt. (2014)。伊朗政府机构员工的工作生活质量和工作满意度。《基础与应用科学研究杂志》,4 (1),217-229。Otto, JL 和 Webber, BJ (2013)。美国空军遥控飞机飞行员的心理健康诊断和咨询。《医学监测月报》,20 (3),3-8。Robbins, SP (1989)。组织行为:概念、争议和应用。新泽西:Prentice Hall。Rossi, AM、Perrewee, PL 和 Sauter, SL (2006)。压力和工作生活质量。格林威治:信息时代出版社。Srivastava, S. 和 Kanpur, R. (2014)。工作生活质量研究:关键要素及其影响。IOSR-JBM,16 (3),54-59。Thompson, MN,和 Subich, LM (2006)。社会地位与职业决策过程的关系。职业行为杂志,69 (2),289-301。Von dem Knesebeck, O.、Mnich, E.、Angermeyer, MC、Kofahl, C. 和 Makowski, A. (2015)。德国之翼空难后抑郁症耻辱感的变化——来自德国人口调查的结果。情感障碍杂志,186,261-265。Walton, RE (1975)。工作生活质量标准。在 LE Davis、AB Cherns 和同事(编辑)的《工作质量》(第 91-104 页)中。纽约:自由出版社。Wiegmann,DA 和 Shappell,SA(2017 年)。航空事故分析的人为错误方法:人为因素分析和分类系统。纽约:劳特利奇。
医科大学。Dena Journal, 5 (3 & 4), 28-37。Hunker, I. K. (2014)。酒店业的工作生活质量——临时工的观点。哥本哈根商学院。Ilkhanizadeh, S., & Karatepe, O. M. (2017)。对航空业企业社会责任后果的考察:工作投入、职业满意度和发声行为。《航空运输管理杂志》,59,8-17。Jayakumar, A., & Kalaiselvi, K. (2012)。工作生活质量——概述。国际市场营销、金融服务和管理研究杂志,1 (10),140-151。Kaiser, H. F. (1991)。主成分的系数 alpha 和 Kaiser-Guttman 规则。心理报告,68 (3),855-858。Krueger, P.、Brazil, K.、Lohfeld, L.、Edward, H. G.、Lewis, D. 和 Tjam, E. (2002)。组织特定的工作满意度预测因素:来自加拿大多地点工作生活质量横断面调查的结果。摘自 http://www.biomedcentral.com/content/pdf/1472-6963-2-6.pdf Lau, R. S. M. (2000)。QWL 和绩效:对服务利润链模型中两个关键要素的临时调查。国际服务业管理杂志,11 (5),422-437。Maurino, D. E.、Reason, J.、Johnston, N. 和 Lee, R. B.(2017)。超越航空人为因素:高科技系统中的安全。NY:劳特利奇。Mirsepasi, N. (2005)。战略人力资源管理和工作关系(展望全球化)。德黑兰:Mir 出版。Nekouei, M. H., Othman, M.Bt., Masud, J.Bt., & Ahmad, A. Bt.(2014)。伊朗政府机构员工的工作生活质量和工作满意度。《基础与应用科学研究杂志》,4 (1),217-229。Otto, J. L., & Webber, B. J.(2013)。美国空军遥控飞机飞行员的心理健康诊断和咨询。《医疗监测月报》,20 (3),3-8。Robbins, S. P. (1989)。组织行为:概念、争议和应用。新泽西:Prentice Hall。Rossi, A. M.、Perrewee, P. L. 和 Sauter, S. L. (2006)。压力和工作生活质量。格林威治:信息时代出版社。Srivastava, S. 和 Kanpur, R. (2014)。(2015)。工作生活质量研究:关键要素及其影响。IOSR-JBM,16 (3),54-59。Thompson,M. N.,& Subich,L. M. (2006)。社会地位与职业决策过程的关系。职业行为杂志,69 (2),289-301。Von dem Knesebeck,O.,Mnich,E.,Angermeyer,M. C.,Kofahl,C.,& Makowski,A.德国之翼空难后抑郁症耻辱感的变化——来自德国人口调查的结果。情感障碍杂志,186,261-265。Walton, R. E. (1975)。工作生活质量标准。在 L. E. Davis, A.B. Cherns 及其同事(编辑),工作质量(第91-104 页)。纽约:自由出版社。Wiegmann, D. A. 和 Shappell, S. A.(2017)。航空事故分析的人为错误方法:人为因素分析和分类系统。纽约:劳特利奇。
斯科特·加尔斯特空军研究实验室 俄亥俄州赖特-帕特森空军基地 面部肌电图 (fEMG) 是一种肌电图测量技术,主要用作测量情感的工具,但之前的实验表明,它也有助于量化认知工作量。在当前的研究中,实时监测了两个与任务无关的面部肌肉,皱眉肌和额外侧肌,以确定它们是否对遥控飞机 (RPA) 任务环境中的工作量变化敏感。应用实时信号处理技术从窗口 fEMG 数据中得出中值幅度和零交叉率。对这些特征的统计分析确定,这两种肌肉都对特定工作量操纵的变化很敏感。这项研究表明,从上述肌肉中提取的实时 fEMG 特征有可能作为或有助于认知工作量的指标。未来的工作旨在改进 fEMG 数据收集技术,以产生更灵敏、更具代表性的适合工作量评估的测量方法。长时间保持警惕的能力对于航空航天领域的许多职位来说都至关重要。例如,飞行员、传感器操作员和空中交通管制员必须保持高水平的态势感知,以确保最佳的安全和性能。认知工作量是决定操作员在防止危险后果所需水平上执行能力的重要因素 (Young & Stanton, 2002)。认知超负荷和负荷不足都会导致性能下降,而适度的认知唤醒有助于实现理想的性能能力 (Cohen, 2011)。为了减轻航空航天操作员的警觉负担并帮助他们保持理想的表现,开发了感知-评估-增强 (SAA) 框架,以识别和缓解各种任务环境中的认知工作量不平衡 (Galster & Johnson, 2013)。由于认知工作量的变化已被证明与各种生理事件相关,因此可以应用该框架来感知航空航天操作员产生的一系列生理指标,将这些指标纳入可以评估操作员认知状态的模型中,然后增强操作员的表现以减轻认知超负荷或负荷不足引起的绩效下降 (Wilson & Russell, 2007; Hoepf, Middendorf, Epling, & Galster, 2015; Hoepf et al., 2016)。用于评估工作量 (Hoepf et al., 2016)。为了使基于 SAA 的工作负荷建模方法能够在广泛的任务环境中发挥作用,必须将大量生理测量作为模型的输入。操作员执行的任务的性质可能决定了每种生理测量(皮质、心脏等)的有用性。例如,在心算类型的任务中,发现皮质测量与工作负荷有很好的关联,而心脏测量对主要需要使用仪器的飞行任务中的工作负荷很敏感,而眼部测量与高度依赖视觉的飞行任务中的工作负荷有关(Hankins & Wilson,1998)。许多心理生理学家和工程师正在研究各种生理测量与认知工作负荷之间的相关性,试图进一步提高实时模拟个人认知状态的能力。面部肌电图 (fEMG) 是最近被探索作为认知工作负荷潜在指标的生理信号之一。fEMG 是一种肌电图 (EMG) 测量技术,通过感应和放大产生的微小电脉冲来描述肌肉活动