免疫疗法已彻底改变了癌症治疗,抗PD-1/PD-L1轴治疗表现出各种肿瘤类型的显着临床效率。但是,应该注意的是,这种疗法对于所有PD-L1阳性患者而言并不普遍有效,强调需要加快对PD-1的第二个配体(称为程序性细胞死亡受体配体2(PD-L2))进行加快研究。作为免疫检查点分子,PD-L2与患者的预后有关,并且在癌细胞免疫逃生中起关键作用。对PD-L2表达的调节过程的深入了解可能会使患者从抗PD-1免疫疗法中分层。我们的综述着重于探索不同肿瘤中的PD-L2表达,其与预后,调节因子的相关性以及PD-L2与肿瘤治疗之间的相互作用,这可能在开发免疫组合疗法方面可提供明显的途径,并改善抗PD-1治疗的临床效率。
配体对于调整溶液中金属复合物的反应性至关重要。1,2不稳定或半比例的配体可能发挥作用,以增强3 - 5个直接,6 - 8或抑制9金属中心的反应性,从而影响更多的效率和更多的选择性催化。研究不稳定配体的物种和交换动力学对于了解金属配合物在溶液中的反应至关重要。通常通过紫外可见或核磁共振(NMR)光谱法监测配体与金属中心的结合和交换。10 - 14这些方法提供了有关复合物配体交换和旋转状态的信息。但是,他们通常仅报告溶液中的主要物种,并且不能有效地跟踪低丰富的复合物。此外,NMR对顺磁复合物的分析需要复杂的方法。15相反,质谱法(MS)与电喷雾电离(ESI)相结合,具有高灵敏度,并使得可以监测次要物种。它用于研究与不稳定配体的金属配合物的形态,无论金属的性质或自旋状态如何,或遵循由金属 - 有机络合物催化的反应。16 - 23
Multitarget配体(MTL)已成为解决复杂多因素病理(例如神经退行性疾病)的有趣替代方法。然而,与这些化合物相关的常见挑战通常是它们的高分子量和低溶解度,这在试图渗透到血脑屏障(BBB)上时成为一个障碍。在这项研究中,我们设计了两个新的MTL,它们同时调节了三个Pharmaco逻辑靶标(TAU,β-淀粉样蛋白和TAR DNA结合蛋白43)。为了增强其脑穿透力,我们使用聚(乳酸 - 乙醇酸)制定了有机聚合物纳米颗粒。通过体外BBB模型评估了制剂的炭化,评估其在疾病代表性的细胞模型上的活性,例如阿尔茨海默氏病和肌萎缩性侧面硬化症。结果证明了新的MTL及其纳米颗粒封装的潜力,以治疗神经退行性疾病。
摘要:氧化还原的非处以配体与金属前体反应形成复合物,其中配体的氧化态和金属原子无法轻易定义。这是此类Lig-和s的一个众所周知的例子是BI(O-氨基酚)N,N'-BIS(3,5-二 - tert丁基-2-羟基 - 羟基苯基)-1,2-苯基二酰胺,以前是由WieghardT组开发的,它允许具有四个不同的蛋白质态态和四个不同的蛋白质均匀态,并且具有四个不同的蛋白酶元素,并且具有四个不同的蛋白酶元素,并具有四个不同的蛋白酶元素,并具有四个独特的蛋白酶元素,并具有四个不同的蛋白酶。国家。 这种丰富的氧化还原化学以及与各种过渡金属协调的能力,已用于具有M 2 L,ML和ML 2 stoichiomerties的金属配合物的合成中,有时还由其他配体支持。 配体的不同氧化态可以采用不同的配位模式。 例如,以完全氧化的形式,两个N捐赠者被SP 2杂交,这使配体平面使得,而在完全还原的形式中,SP 3杂交N供体允许形成更柔软的螯合物结构。 通常,在络合过程中可以减少金属,但是分离的复合物的氧化还原过程通常出现在配体上。 这种非一种中心配体与氧化还原活性过渡金属的组合可能会导致具有有趣的磁性,电化学,光子和催化特性的复合物。这是此类Lig-和s的一个众所周知的例子是BI(O-氨基酚)N,N'-BIS(3,5-二 - tert丁基-2-羟基 - 羟基苯基)-1,2-苯基二酰胺,以前是由WieghardT组开发的,它允许具有四个不同的蛋白质态态和四个不同的蛋白质均匀态,并且具有四个不同的蛋白酶元素,并且具有四个不同的蛋白酶元素,并具有四个不同的蛋白酶元素,并具有四个独特的蛋白酶元素,并具有四个不同的蛋白酶。国家。这种丰富的氧化还原化学以及与各种过渡金属协调的能力,已用于具有M 2 L,ML和ML 2 stoichiomerties的金属配合物的合成中,有时还由其他配体支持。配体的不同氧化态可以采用不同的配位模式。例如,以完全氧化的形式,两个N捐赠者被SP 2杂交,这使配体平面使得,而在完全还原的形式中,SP 3杂交N供体允许形成更柔软的螯合物结构。通常,在络合过程中可以减少金属,但是分离的复合物的氧化还原过程通常出现在配体上。这种非一种中心配体与氧化还原活性过渡金属的组合可能会导致具有有趣的磁性,电化学,光子和催化特性的复合物。
摘要:光动力疗法 (PDT) 是一种很有前途的癌症治疗方法,它涉及光敏剂 (PS)、用于激活 PS 的特定波长的光和氧气,它们结合在一起引发细胞死亡。虽然激活 PS 所需的光照为 PDT 治疗提供了一定的选择性,但肿瘤蓄积不良和细胞内化不良仍然是大多数静脉注射 PS 的固有特性。因此,PDT 的常见后果包括皮肤光敏性。为了克服上述问题,可以定制 PS 以专门针对肿瘤的过度表达生物标志物。这种主动靶向可以通过将 PS 直接结合到具有增强亲和力的配体上来实现,该配体对癌细胞和/或肿瘤微环境中的其他细胞上过度表达的靶标具有增强的亲和力。或者,PS 可以整合到配体靶向纳米载体中,其也可能包含多种功能,包括诊断和治疗。在这篇评论中,我们重点介绍了 PS 主动靶向方面的重大进展,无论是通过配体衍生的生物共轭物还是通过利用配体靶向纳米载体。
摘要:离子液体 (IL) 的有用特性源自分子可调的组成,但使阴离子身份多样化和探测离子形态的方法仍然有限。在这里,我们展示了合成后对全卤金属阴离子的改性,以实现离子液体到离子液体的转变。含金属 IL 的流变测量表明,阴离子配位层的微小改变会导致 IL 粘度发生相当大的变化。紫外可见光谱证实了大多数 IL 的纯度,同时揭示了全氯钒酸盐形态和超分子结构令人惊讶的阳离子依赖性。这里研究的分子间相互作用涵盖了从分散到共价键的广泛范围,允许将它们对 IL 粘度的影响解耦和量化。配位化学的合成策略与传统的紫外可见光谱相结合,为扩展 IL 组成和研究基本的纳米级行为提供了强大的工具。
摘要:已知DNA稳定的银纳米簇(Ag n -DNA)具有每纳米簇的一个或两个DNA低聚物配体。在这里,我们提供了第一个证据,表明Ag n -DNA物种可以拥有额外的氯化物配体,从而导致生物学相关浓度的氯化物的稳定性提高。质量光谱 - 五种色谱分离的近红外(NIR) - 具有先前报道的X射线晶体结构的发射Ag N -DNA物种确定其分子式为(DNA)2 [AG 16 Cl 2] 8+。氯化物配体可以换成溴化物,这些溴化物是这些发射器的光谱的红移。密度功能理论(DFT)的6-电子纳米簇的计算表明,以前通过X射线晶体学通过X射线晶体学分配了两个新鉴定的氯化物配体。dft还证实了氯化物在晶体学结构中的稳定性,得出了计算和测量的紫外线吸收光谱之间的定性一致性,并提供了(DNA)2 [AG 16 Cl 2] 8+的35个Cl-核磁共振光谱的解释。对X射线晶体结构的重新分析证实,先前分配的两个低占用银色的银色实际上是氯化物,屈服(DNA)2 [AG 16 Cl 2] 8+。使用(DNA)2 [Ag 16 Cl 2] 8+在生物学相关的盐水溶液中的异常稳定性作为其他含氯化物Ag n -DNA的可能指标,我们通过高通量筛选确定了一个具有氯化物配体的额外的Ag n -DNA。■简介将氯化物纳入Ag n -DNA中提出了一种有希望的新途径,以扩大Ag n- DNA结构 - 性质关系的多样性,并使这些发射器具有对生物探测器应用的有利稳定性。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
在原子细节中解决蛋白质 - 配体相互作用是了解小分子如何调节大分子功能的关键。尽管最近的低温电子显微镜(Cryo-EM)进行了分解,但可以对许多复杂的生物分子进行高质量的重建,但是结合的Lig-和S的分辨率通常相对较差。此外,将分子模型构建和完善分子模型的自动化方法主要集中在蛋白质上,并且可能不会针对小分子配体的各种特性进行优化。在这里,我们提出了一种将生成性人工智能(AI)与低温EM密度引导的模拟整合在一起,以将配体拟合到实验图中。使用三个输入:1)蛋白质氨基酸序列,2)配体规范,以及3)实验性的冷冻EM图,我们验证了我们在一组生物医学相关的蛋白质配体复合物上验证了我们的方法,包括激酶,GPCR和溶质转运蛋白,在AI培训数据中都不存在。在生成AI不足以预测实验姿势的情况下,将柔性拟合整合到分子动力学模拟中,相对于沉积的结构从40-71%到82-95%的分子模拟拟合的整合改善了配体模型对图。这项工作提供了一个直接的模板,用于集成生成的AI和密度引导的模拟,以在配体 - 蛋白质复合物的低温EM地图中自动化模型构建,并在新型调节剂和药物的表征和设计中使用潜在的应用。