细胞配体是介导细胞与其环境之间通信的必需分子。充当信号使者,配体与靶细胞或目标细胞内的特定受体结合,触发一系列细胞内事件,这些事件调节生长,免疫反应,代谢和稳态等生理过程。本文分析了生物系统中细胞配体的类型,机制和意义。配体是一种与靶受体形成特定的,可逆的相互作用的分子。这种相互作用激活或抑制受体的功能,从而使细胞对外部刺激做出反应。细胞配体包括各种分子,例如激素,神经递质,细胞因子,生长因子,甚至是光或机械力等环境信号。
使用量子化学 (QC) 量化分子间相互作用可用于解决许多化学问题,包括了解蛋白质-配体相互作用的性质。不幸的是,对于大多数用例而言,蛋白质-配体系统的 QC 计算在计算上过于昂贵。机器学习 (ML) 潜力的蓬勃发展是一个有前途的解决方案,但它受到无法轻松捕捉长距离非局部相互作用的限制。在这项工作中,我们开发了一个原子对神经网络 (AP-Net),专门用于模拟分子间相互作用。该模型受益于许多物理约束,包括一个双组分等变信息传递神经网络架构,该架构通过单体电子密度的中间预测来预测相互作用能量。AP-Net 模型还受益于由成对的配体和蛋白质片段组成的综合训练数据集。该模型以计算成本降低了几个数量级的方式准确预测蛋白质-配体系统的 QC 质量相互作用能量。
核酸纳米结构的自组装是由寡核苷酸模块通过互补序列之间的碱基配对选择性结合所驱动的。本文,我们报告了在腺苷配体控制下有条件组装的 RNA-DNA 混合纳米形状的开发。纳米形状的设计概念依赖于 DNA 适体的配体依赖性稳定,DNA 适体充当边缘稳定的 RNA 角模块之间的连接器。配体依赖性 RNA-DNA 纳米形状通过将腺苷结合与圆形闭合结构的形成相结合,在全有或全无的过程中进行自组装,这些结构通过在所得多边形中的连续碱基堆叠来稳定。通过筛选各种 DNA 适体构建体与 RNA 角模块的组合以形成稳定的复合物,我们确定了腺苷依赖性纳米方块,其形状通过原子力显微镜确认。作为传感器应用的概念验证,通过 DNA 适体成分的染料结合获得了对腺苷有响应的 FRET 活性纳米方块。
摘要 外泌体是纳米级的细胞外囊泡,在细胞间通讯中起着重要作用,携带可影响生理和病理过程的蛋白质、脂质和 RNA 等生物分子。纯外泌体的分离对于基础研究和临床应用(包括诊断和治疗)都至关重要。传统的外泌体分离技术(例如超速离心)缺乏特异性并且可能产生不纯的样品,因此显然需要先进的分离技术。基于配体的外泌体亲和纯化 (LEAP) 柱层析是一种利用针对外泌体表面标志物的特定配体的新方法,为外泌体分离提供了一种高度特异性、温和且可扩展的方法。这篇小型综述探讨了 LEAP 层析的机制、优点和临床应用潜力,强调了其在基于外泌体的诊断和治疗中日益增长的重要性。
抽象背景卵巢癌是最致命的妇科恶性肿瘤,在标准疗法失败后治疗方案有限。尽管聚(ADP-核糖)聚合酶抑制剂的潜力在治疗DNA损伤反应(DDR)缺乏卵巢癌中,耐药性和免疫抑制的发展限制了其疗效,因此需要替代治疗策略。聚(ADP-核糖)糖醇酶(PARG)的抑制剂代表了一类新型抑制剂,目前正在临床前和临床研究中评估用于癌症治疗的抑制剂。Methods By using a PARG small-molecule inhibitor, COH34, and a cell-penetrating antibody targeting the PARG's catalytic domain, we investigated the effects of PARG inhibition on signal transducer and activator of transcription 3 (STAT3) in OVCAR8, PEO1, and Brca1 - null ID8 ovarian cancer cell lines, as well as in immune cells.我们检查了PARG抑制诱导的对Stat3磷酸化,核定位,靶基因表达和抗肿瘤免疫反应的影响,在患者衍生的肿瘤器官中以及免疫功能的BRCA1-NULL ID8卵巢小鼠模型中,与DDR缺乏人类高度污染的染色ovarian癌症相似。我们还测试了过表达组成型激活的STAT3突变体对COH34诱导的肿瘤细胞生长抑制的影响。结果我们的发现表明,PARG抑制通过卵巢癌细胞的去磷酸化下调了STAT3活性。重要的是,肿瘤细胞中组成型激活的STAT3突变体的过表达减弱了PARG抑制剂诱导的生长抑制作用。另外,PARG抑制可减少免疫细胞中的STAT3磷酸化,从而导致抗肿瘤免疫反应的激活,这在与卵巢癌患者肿瘤衍生的类器官和免疫功能型小鼠体内的免疫细胞中显示,体现了抗肿瘤的免疫反应。结论我们已经确定了通过阻止DDR在卵巢癌中的DDR,超出其主要抗肿瘤作用的新型抗肿瘤机制。
多孔协调聚合物(PCP)12和金属 - 有机框架(MOF)。13 - 17与理想药物释放材料相关的障碍很复杂,并且根据目标药物和给药途径而变化(例如,口服,静脉内,皮下,透皮或眼部)。2因此,创建材料始终纳入所需的治疗量并控制药物的释放率仍然是一个巨大的挑战。许多药物释放材料,从非晶聚合物分散剂到金属 - 有机框架,相同的基本问题:药物吸收和释放主要是通过基于不同用途的机制来完成的。18,依赖于药物载荷和释放的依赖,从而导致对药物释放动力学的控制不佳,并可能导致“爆发释放”。在这种情况下,该药物迅速分散到周围的培养基中,o gen进行过多的治疗剂量并有可能达到有毒剂量浓度。6
摘要:研究了 Pd(II) 催化的单 N 保护氨基酸 (MPAA) 配体和 TBHP 氧化剂介导的脂肪族羧酸中 β-C(sp 3 )–H 键内酯化反应的机理。我们已经表明,TBHP 氧化剂和 MPAA 配体的组合非常关键:反应通过 MPAA 配体介导的 TBHP 氧化 Pd(II)/Pd(IV) 进行,然后 Pd(IV) 中间体发生 C–O 还原消除。虽然 Pd(II)/Pd(IV) 氧化是限速步骤,但 C–H 键活化是区域选择性控制步骤。 MPAA 配体不仅可作为辅助配体稳定催化活性物质,还可作为 C–H 键去质子化过程中的质子受体,以及 TBHP 氧化 Pd(II)/Pd(IV) 过程中的质子供体。使用带有羟基的过氧化物基氧化剂也是绝对必要的:在限速 Pd(II)/Pd(IV) 氧化过渡态中,OH 基团的 H 原子参与 1,2-氢转移,以促进 MPAA 配体和过氧化物之间的质子穿梭。因此,脂肪族羧酸中 C(sp 3 )–H 键的内酯化通过 Pd(II)/Pd(IV) 催化循环进行,这与之前报道的 Pd(II) 催化、吡啶酮配体和 O 2 氧化剂辅助的芳香族 o-甲基苯甲酸中苄基 C–H 内酯化不同,后者通过 Pd(II)/Pd(0) 催化循环和分子内 SN 2 亲核取代机理进行。通过比较脂肪族和芳香族羧酸中 C(sp 3 )–H 键内酯化的这些结果,我们能够确定催化剂、底物、配体和氧化剂的作用。
例如,在药物候选物的代谢氧化位点用氟原子取代氢原子可能会阻止这种代谢的发生。由于氟原子的大小与氢原子相似,因此分子的整体拓扑结构不会受到明显影响,从而不会影响所需的生物活性。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2020 年 7 月 28 日发布。;https://doi.org/10.1101/2020.04.04.20053504 doi:medRxiv preprint
背景:GLUT4 在胰岛素或运动刺激下促进脂肪细胞和骨骼肌吸收葡萄糖,在维持葡萄糖稳态方面发挥着至关重要的作用。GLUT4 运输中断是 2 型糖尿病的标志,与肥胖有关。1 目前研究 GLUT4 的技术主要依赖于 GFP-GLUT4 融合蛋白的表达 2 或抗体的使用。3 尽管如此,GFP 融合蛋白不适合研究 GLUT4 的亚群,而基于抗体的方法存在特异性问题,通常仅限于固定组织。缺乏标记内源性 GLUT4 和识别其在各个区室中的相互作用伙伴的工具,阻碍了对其运输和调节的理解,并限制了为治疗目的而调节其分布的策略的发展。配体引导的两步标记提供了一个平台,可以以极好的特异性标记内源性 GLUT4,同时保留其功能(图 1a)。该方法可以标记目标蛋白 (POI) 的亚群,之前曾用于研究神经元中的 AMPA 受体运输。4 我们的实验室在设计、合成和应用类似的配体定向标记探针方面拥有丰富的经验。我们建议采用这种技术标记内源性 GLUT4,以研究其运输并绘制其相互作用组图。