一氧化氮 (NO) 是许多生理过程的分子介质,包括血管舒张、炎症、血栓形成、免疫和神经传递。目前有许多方法可用于测量生物系统中的 NO。其中一种方法是使用 Griess 重氮化反应,通过分光光度法检测生理条件下 NO 自发氧化形成的亚硝酸盐。该方法的检测限为 1.0 µM 亚硝酸盐。Griess 反应还可用于通过硝酸盐催化还原为亚硝酸盐来分析硝酸盐。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮在碱性亚砷酸钠或三乙醇胺吸收剂溶液中以亚硝酸根离子的形式固定。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (C.I.50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度降低,随后脱氨。添加溴离子可提高重氮化速率,反应几乎立即完成。亚硝酸盐浓度为 0 – 20 µg 时,符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1 。显色体系可稳定 2 天。染料可在碱性条件下用异戊醇提取,加入甲醇硫酸可恢复染料颜色。摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
Aarti Industries Limited通过综合且多样化的商业模式建立了强大的基础,强调研发和化学能力。在过去的二十年中,该公司开发了各种产品和流程。AIL在广泛的化学物质中获得了专业知识,包括氨基解析,氯化,重氮化,Halex(氟化),氢化和硝化等,以及植物和实验室尺度。它在马哈拉施特拉邦和古吉拉特邦运营中心,并拥有一个专门的研发团队,其中包括250多名工程师和科学家,其中包括19位博士。目前,AIL在各个阶段的研发管道中有40多种产品。该公司正在投资于针对各种日出领域的产品,越来越重视可持续和绿色解决方案,电池化学品,电子化学品,新时代材料和高端聚合物。
氮气容易获得散装化学物质,可以用作一系列合成反应的多功能起始材料。然而,由于c ar – no 2键的惰性,直接否定的替代反应与未激活的硝化苯子仍然具有挑战性。化学家依赖于顺序还原和重氮化,然后是砂光剂反应或活化氮气的亲核芳族取代,以实现硝基群体转化。在这里,我们在可见光照射下开发了一种普遍的硝化氯化反应,其中氯自由基通过c ar –no 2键的裂解取代了硝基部分。这种实用的方法可与多种未活化的硝基(Hetero)领域和硝基烷烃一起使用,对空气或水分不敏感,并且可以在Decagram量表上顺利进行。这种转化与在合成和机制中的热条件下与先前的亲核芳族取代反应有所不同。密度功能理论计算揭示了取代反应的可能途径。
摘要:单壁碳纳米管(SWCNT)是1D纳米材料,显示近红外(NIR,> 800 nm)中的荧光。过去,在损害NIR发射时,探索了共价化学以使SWCNT功能化。然而,碳晶格中的某些SP 3缺陷(量子缺陷)已经出现,可以保留NIR荧光,甚至引入了新的红移发射峰。在这里,我们报告了使用轻驱动重氮化学物质引入的量子缺陷,这些缺陷是肽和蛋白质的锚点。我们表明,马来酰亚胺锚允许含有半胱氨酸的蛋白(例如GFP结合纳米机)结合。此外,FMOC保护的苯丙氨酸缺陷是可见的荧光团结合以创建多色SWCNT和直接在纳米管上的原位肽合成的起点。因此,这些量子缺陷是一个多功能平台,可量身定制纳米ubeqs光合物理特性及其表面化学。
dsir-crtdh在CSIR-NCL上,Pune正在通过连续的流量合成及其制造规模来从事化学中间体,染料和着色剂行业的过程加剧。各种反应的广泛谱系,例如芳香硝化,重氮化和耦合,Meerwein芳基化,亚磺化,硫化,胺化,氨基化,溴化,氯化,氯化,氯化,氟化,氟化,grignard,Grignard,Grignard反应,岩性反应,冰分分解,氧化氧化,氧化氧化,远程氧化,远离抗氧化,以及抗氧化剂,并构成了氧化度<氧化度<氧化剂,并抗凝结效应,并构成杂种化,并构成杂种化,远程抗化>已经在不同的尺度上成功证明(从千克/天到吨/天不等)。研讨会的目的是展示一些案例研究(偶氮染料,酸染料,反应性染料和基本染料),并详细介绍CSIR-NCL在与该行业中的MSMES合作时遵循的方法。研讨会将与IIT Gandhinagar教职员工一起进行,并在持续过程的安全和Hazop分析方面具有专业知识。
摘要:三氟甲基(–CF 3)组代表药物中高度普遍的功能。在过去的几十年中,在三氟甲基化的合成方法的发展中取得了重大进展。相比之下,目前尚无已知的金属酶可以催化C(SP 3)–CF 3键。在这项工作中,我们证明了一种非血红素铁酶,羟基苯甲酸酯合成酶来自杏仁核东方(aohms),能够从高度碘(III)试剂中产生CF 3的自由基,并指导它们以辅助性烯烃丙烯酸烷烯三氟甲酰胺甲氮化酶。建立了基于Staudinger Liga的高通量筛选(HTS)平台(HTS)平台,从而实现了对这种物质转化的AOHMS变体的快速评估。最终优化的变体接受一系列烯烃底物,产生三氟甲基氮化产物的产物,产量高达73%和96:4对映体比率(E.R.)。生物催化平台可以通过改变碘(III)试剂来进一步扩展到烯烃五氟乙基氮化氮化和重氮化。另外,阴离子竞争实验为这种生物学转变提供了对根本反弹过程的见解。这项研究不仅扩大了金属酶的催化库,以进行根本转化,而且还为有机氟的合成创造了新的酶促空间。
与传统化学方法相比,连续流技术的优点是可以高度控制温度、压力、停留时间等工艺参数,易于放大和自动化,适用于多步合成。1 – 3因此,它是控制化学反应的理想技术。连续流化学提供了一个自动化友好、灵活、创新和节省空间的反应平台,并且最近才刚刚成熟。近年来,流动化学已涉及越来越多的实验。由于一次性访问量大,流动化学特别适用于重氮化、氧化、硝化等危险反应。作为一种安全、易于控制和绿色的平台,流动化学符合可持续发展的理念,正受到越来越多的关注。合成反应的优化对于化学研究和发现都至关重要。然而,优化,特别是在天然化学生产中的优化,往往涉及多个变量和目标,使问题变得更加复杂。为降低优化过程的复杂性,化学自动化是首选,且在小规模连续流实验中很容易实现。过程分析技术 (PAT) 是一种通过测量影响关键质量属性 (CQA) 的关键过程参数来设计、分析和控制制造过程的系统。4 将在线或在线分析技术与流动化学相结合,可实现实时检查和过程控制,从而帮助实现生产过程自动化。例如,在线核磁共振 (NMR) 和在线红外 (IR) 可帮助系统快速准确地收集生产所需的信息。收集到的信息被传递到计算机进行处理,从而指导本次或下次实验。通过 PAT 工具快速、集成地采集数据,可以使用自动优化算法处理数据丰富的实验。然而,这对 PAT 工具的设备、数据采集和处理能力提出了很高的要求。随着人工智能 (AI) 的发展,大多数问题都在不断得到改善,从而提高了当前生产的效率、敏捷性、质量和灵活性。PAT 工具是流化学中 AI 自我优化的前提和基础。本综述总结了最近 AI 在连续流化学生产的化学产品过程分析和优化中的应用。