● 基于最近关于化石燃料燃烧对全球空气污染物水平的贡献以及空气污染对健康的影响的研究进展,首次对化石燃料造成的空气污染的全球经济成本进行评估。● 据估计,2018 年化石燃料造成的空气污染的经济成本为 2.9 万亿美元,占全球 GDP 的 3.3%,远远超过快速减少化石燃料使用可能产生的成本。● 据估计,2018 年有 450 万人因接触化石燃料造成的空气污染而死亡。平均而言,每例死亡导致寿命损失 19 年。● 化石燃料 PM2.5 污染造成 18 亿天的工作缺勤、400 万例儿童哮喘新发病例和 200 万例早产,以及影响医疗成本、经济生产力和福利的其他健康影响。
第一部分。对实验结果的讨论。前面论文中描述的结果表明,膜的电行为可以由图中所示的网络表示。1。电流可以通过为膜容量充电或通过与容量并联的电阻通过电阻来通过膜传递。离子电流分为由钠和钾离子(INA和IK)携带的成分,以及由氯化物和其他离子组成的小“泄漏电流”(I,I)。离子电流的每个组件都由驱动力确定,该驱动力可以方便地测量为电势差和具有电导尺寸的渗透系数。因此,钠电流(INA)等于钠电导率(9NA)乘以膜电位(E)和钠离子(ENA)平衡电位之间的差异。类似的方程式适用于'K和I,并在p上收集。 505。我们的实验表明GNA和9E是时间和膜电位的函数,但是ENA,EK,EL,CM和G可以将其视为恒定。可以通过说明:首先,将膜电位对渗透率的影响汇总会导致钠电导率的瞬时增加,并且降低但保持较慢但保持钾的增加速度的增加;其次,这些变化是分级的,并且可以通过重现膜来逆转。为了确定这些影响是否足以说明复杂现象,例如动作潜力和难治时期,有必要获得有关
摘要:与啮齿类动物的丰富环境不同,人类建造的环境通常会通过久坐的生活方式阻碍神经可塑性,损害认知和心理健康。本文引入了“身体活动的环境可供性”,以量化空间布局设计刺激活动和维持神经可塑性(主要是海马神经发生)的潜力。一个新颖的框架将城市和建筑变化的代谢当量 (MET) 与脑源性神经营养因子 (BDNF) 联系起来,后者是一种促进和维持成人海马神经发生和长期增强 (LTP) 的生物标志物。通过短暂暴露于建筑环境 20-35 分钟后可测量的 BDNF 变化,开发了方程式来评估神经可持续性潜力,因为有证据表明,通过低强度到中等强度的身体活动可以引起 BDNF 释放。该模型提供了一种可行的评估工具,将设计和神经科学连接起来。通过维持神经发生,环境对身体活动的承受能力有望通过海马神经发生的可持续性来改善心理健康并防止认知能力下降。
图像超分辨率是最流行的计算机视觉问题之一,在移动设备上有许多重要的应用。虽然已经为这项任务提出了许多解决方案,但它们通常甚至没有针对常见的智能手机 AI 硬件进行优化,更不用说通常仅支持 INT8 推理的更受限的智能电视平台了。为了解决这个问题,我们推出了第一个移动 AI 挑战赛,其目标是开发一种基于端到端深度学习的图像超分辨率解决方案,该解决方案可以在移动或边缘 NPU 上展示实时性能。为此,为参与者提供了 DIV2K 数据集和训练过的量化模型,以进行高效的 3 倍图像升级。所有模型的运行时间都在 Synaptics VS680 智能家居板上进行评估,该板具有能够加速量化神经网络的专用 NPU。所提出的解决方案与所有主流移动 AI 加速器完全兼容,能够在 40-60 毫秒内重建全高清图像,同时实现高保真度结果。本文提供了挑战赛中开发的所有模型的详细描述。
高清(HD)地图对于自动驾驶系统的安全至关重要。虽然现有技术启用了相机图像和板载传感器以生成对高精度地图的审核,但它们受到对单帧输入的依赖的限制。这种方法限制了它们在诸如OCClusions之类的复杂情况下的稳定性和性能,这主要是由于缺乏时间信息。此外,当应用于更广泛的感知范围时,它们的性能会降低。在本文中,我们介绍了流媒体,这是一种新颖的在线映射管道,擅长于视频的长期时间建模。流媒体网络采用了多点的关注和时间信息,可以使大型本地高清图的构建具有高稳定性,并进一步解决了现有方法的限制。此外,我们严重地使用了广泛使用的在线HD MAP构造基准和数据集,Argoverse2和Nuscenes,在现有评估协议中揭示了显着的偏见。我们根据地理跨度来启动基准,从而促进公平而精确的评估。实验结果验证了流媒体网络在所有设置中都显着超过现有方法,同时保持在线推断速度为14。2 fps。我们的代码可在https://github.com/yuantianyuan01/ streammapnet上使用。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
*莱布尼兹金融研究所安全,歌德大学法兰克福大学,西奥多 - - 阿多尔·普拉茨3,60323,法兰克福,德国法兰克福,德国,jappelli@safe-frankfurt.de。† Leibniz Institute for Financial Research SAFE, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 3, 60323, Frankfurt am Main, Germany, Ca' Foscari University of Venice, Dorsoduro, 3246, 30123 Venezia, Italy, and CEPR, pelizzon@safe.uni-frankfurt.de .‡纽约大学,伦纳德·N·斯特恩商学院和纽约大学上海,考夫曼管理中心,西四街4444号,9-68,10012,纽约,纽约,msubrahm@stern.nyu.edu。我们感谢Giovanni Dell'ariccia,Wenxin du,Darrell Duffie,Ester Faia,Matthias Fleckenstein,Robin Greenwood,Zhiguo He(讨论者),Florian Heider,Yesol Huher,Yesol Huh,Sebastian Inte,Sebastian Inte,sebastian jermann,Urban Jermann,Francis Lucistaff,Errikano(Erikano),Erikano(Erikano),Erikano(Erika) Melissinos, Andrea Modena, Cecilia Parlatore, Pietro Reg- giani, Stephen Schaefer, Fabian Smetak (discussant), Claudio Tebaldi, Davide Tomio, Bruce Tuckman, Dimitri Vayanos, Ernst-Ludwig von Thadden, Olivier Wang, Geoffery Zheng, and seminar and conference participants at l'Association Franc¸aise de金融,意大利银行,美联储委员会,歌德大学,莱布尼兹金融研究所安全,第21届国际会议信贷,第9届国际主权债券市场会议,国际风险管理会议(IRMC),LSE,纽约市,纽约大学,纽约大学,乌马斯·阿姆斯特·阿姆斯特·阿姆斯特,威尼斯·阿姆斯特,威尼斯·菲利斯·菲利斯·沃尔·沃尔特·沃尔特·沃尔特·沃尔特 -任何剩余的错误都是我们的。该项目得到了莱布尼兹金融研究所安全的支持。该论文的先前版本的标题为“回购专业的首选范围模型”。 Subrahmanyam非常感谢亚历山大·冯·洪堡基金会(Alexander von Humboldt Foundation)和纽约大学斯特恩(Nyu Stern)的全球经济和商业中心,分别通过Anneliese Maier Award和Anneliese Maier Award和The Acculty Grant Award,以及CA'Foscari Wente University of Wenite University of Wenite University of the研究的早期阶段进行了研究。
这项工作是在Ferheen Ayaz在格拉斯哥大学任职时完成的。作者的联系信息:伊德里斯·扎卡里亚(Idris Zakariyya),格拉斯哥大学,格拉斯哥,英国,idris.zakariyya@glasgow.ac.ac.uk; Ferheen Ayaz,城市,伦敦大学,伦敦,英国,ferheen.ayaz@city.ac.uk; Mounia Kharbouche-Harrari,法国Stmicroelectronics,Mounia.kharbouche-harrari@st.com;杰里米·辛格(Jeremy Singer),格拉斯哥大学,英国格拉斯哥,jeremy.singer@glasgow.ac.uk; Sye Loong Keoh,格拉斯哥大学,英国格拉斯哥,syeloong.keoh@ glasgow.ac.uk; Danilo Pau,意大利Stmicroelectronics,danilo.pau@st.com;何塞·卡诺(JoséCano),格拉斯哥大学,英国格拉斯哥,josecano.reyes@glasgow.ac.uk。
