控制由行进量子场携带的飞行量子比特 (qubits) 对于量子网络中的相干信息传输至关重要。在本文中,我们基于描述由驻留量子系统驱动的输入输出过程的量子随机微分方程 (QSDE) 开发了一个用于对飞行量子比特的控制进行建模的通用框架。在连续时间有序光子数基础上,无限维 QSDE 被简化为驻留量子系统非幺正状态演化的低维确定性微分方程,并且传出的飞行量子比特状态可以以随机发生的量子跳跃的形式表示。正如飞行量子比特生成和变换的例子所证明的那样,这使得分析激发数不保留的一般情况成为可能。所提出的框架为飞行量子比特控制系统的设计奠定了基础,可以将先进的控制技术融入实际应用中。© 2022 Elsevier Ltd. 保留所有权利。
量子力学的建立是20世纪最伟大的成就之一。量子力学提供了一个框架,帮助我们描述和理解涉及电子、光子和原子等微系统的物理世界,同时也有助于解释恒星为何发光以及宇宙如何形成。量子系统独有的性质被发现有助于开发强大的量子技术[30]。量子信息技术、量子传感和量子模拟等新兴量子技术正在迅速发展,量子光学[4]、量子超导系统[121]、自旋系统[103]、[53]等各种量子平台已被用于开发量子技术。量子模拟(即模拟量子力学)有望在凝聚态物理、原子物理和分子化学等领域得到广泛应用[10]。量子信息技术(包括量子通信和量子计算)由于其相对于传统信息技术的优势而具有许多重要的潜在应用。量子计算可以利用
量子计算是利用遵循量子力学定律的系统来存储和处理信息的科学[1]。量子力学在微小尺度上描述自然,其行为与我们的日常经验截然不同。在原子尺度上,系统表现出违反直觉的效应,如纠缠(一种强耦合形式)或固有的、无法解决的不确定性[2]。理查德·费曼在 20 世纪 80 年代首次提出,可以利用这些效应来以优于经典计算的方式执行计算[3]。量子计算机诞生后不久,人们就开发出了一些算法,它们可以比任何已知的经典算法更快地解决某些问题。例如,Grover 算法 [4] 可用于解决 N 元素上的非结构化搜索问题,复杂度仅为 O ( √
量子信息处理要求在控制量表的控制中未经表述的精度。这是由于环境中普遍存在的噪音和不可避免的控制缺陷而变得具有挑战性的,这可能会降低控制权限。在开发量子最佳控制技术方面已取得了巨大进步[1-27]。载体量子计算[28],其中大门基于几何阶段[29 - 35],是在存在噪声的情况下增强门填充的一种方法。使用几何而不是动态阶段实现量子门可以减轻噪声的影响,这些噪声会在不受干扰的控制空间中留下整体循环。几何阶段可以使用绝热[36 - 38]或非绝热驾驶[39 - 49]来计算;后者通过减少操作时间来减轻磨损。非绝热的尸体(几何)门已在超导系统[50,51],被困的离子[52,53]和氮呈(N- V)中成功实现。人类方法的一个优点是,它在选择实验友好的脉搏形状来产生大门时具有很大的灵活性。然而,尽管自动门具有沿载体循环的误差的抵抗力,但它们仍然容易受到横向上的噪声的影响,这种噪声在许多量子平台中很常见。
沈志勋教授在凝聚态物理和复杂材料研究中做出了开创性工作,是学术界 公认的 凝聚态物理领域国际一流科学家。他获得物理领域一些最重要的国 际奖项: 2000 年第一个获得世界超导实验物理最重要大奖:卡梅琳 - 昂尼斯 奖( H. KamerlinghOnnes Prize ) ;2009 年获美国能源部代表美国总统颁发的 科学大奖:欧内斯特 • 奥兰多 • 劳伦斯奖 ;2011 年获美国物理学会凝聚态物理 最高奖:奥利弗 • 伯克莱 (Oliver E. Buckley) 奖; 2013 获中国科学院爱因斯坦 讲席教授称号。从教至今,培养了一大批学生,其中近二十人成为国际知 名大学的教授,包括美国的加州大学伯克利分校 , 康奈尔大学 , 约翰霍普金斯 大学,普林斯顿大学,德州大学,日本的东京大学,英国牛津大学,瑞士 的日内瓦大学。另有三位回到中国,分别担任中科院超导国家重点实验室 主任,复旦大学应用表面国家重点实验室主任,以及中科院上海分院的 “千人计划”教授。拥有多项美国专利 , 涉及新能源,新材料,半导体与纳 米材料度量,传感,与检测。
1 Y2Q(量子年):量子计算机将拥有传统经典计算机无法达到的计算能力,并能够解密当前加密。2 Y2K 漏洞:一个被认为会导致计算机在 2000 年发生故障的问题。人们担心使用后两位数字管理年份的系统会错误地将年份识别为 1900 年,因此对程序进行了修改,并采取了暂停火车和航空运营等措施来应对故障。 在日本,这也被称为“2000年问题”。 3 量子计算机投入实际使用后仍能保持安全的加密方法 4 云安全联盟为量子时代设定倒计时时钟,CSA,2022/3/9:https://cloudsecurityalliance.org/press-releases/2022/03/09/cloud-security-alliance-sets-countdown-clock-to-quantum 5 CISA 宣布后量子密码学计划,美国国土安全部,2022/7/6:https://www.cisa.gov/news-events/news/cisa-announces-post-quantum-cryptography-initiative 6 事实说明书:拜登-哈里斯政府继续努力确保后量子密码学的未来,白宫,2024/8/13: https://www.whitehouse.gov/ostp/news-updates/2024/08/13/fact-sheet-biden-harris-administration-continues-work-to-secure-a-post-quantum-cryptography-future/
抽象量子计算对加密安全性提出了令人兴奋但艰巨的挑战。各种量子计算机在攻击RSA方面的进步显然迟钝。与关键技术(例如通用量子计算机上的误差校正代码)所施加的约束相反,D-Wave特殊量子计算机的关键理论和硬件开发的发展显示出稳定的生长轨迹。量子退火是D-WAVE特殊量子计算背后的基本原理。它具有独特的量子隧道效应,可以跳出传统智能算法容易陷入的局部极端。可以将其视为具有全球优化能力的人工智能算法。本文使用纯量子算法和量子退火与经典算法相结合以实现RSA公共密钥加密攻击(分解大型Integer N = PQ),介绍了两种基于量子退火算法的技术方法。一种是将加密攻击的数学方法转换为组合优化问题或指数空间搜索
摘要近年来,量子计算机和Shor的量子算法对当前主流非对称加密方法构成了威胁(例如RSA和椭圆曲线密码学(ECC))。因此,有必要构建量子后加密(PQC)方法来抵抗量子计算攻击。因此,本研究提出了一个基于PQC的神经网络,该神经网络将基于代码的PQC方法映射到神经网络结构上,并提高具有非线性激活功能,密文的随机扰动以及Ciphertexts均匀分布的密封性遗迹的安全性。在实际实验中,本研究使用蜂窝网络信号作为案例研究,以证明基于PQC的基于PQC的神经网络可以进行加密和解密,并具有密文的均匀分布。将来,提出的基于PQC的神经网络可以应用于各种应用程序。关键字:量词后密码学,McEliece密码学,神经网络
该报告并非旨在是投资招标。本报告中发布的信息来自我们认为可靠的来源,但我们不能保证其准确性或完整性。此外,截至创建时期,书面的意见和预测是在不提前通知的情况下进行更改的。 Daiwa研究所有限公司和Daiwa Securities Co.,Ltd。是Daiwa Securities Group的公司,其母公司总部位于Daiwa Secureities Group Co.,Ltd。内容的所有权利都是在Daiwa Research Institute Co.,Ltd.,Lttd.中,请避免复制,不转换或转移。
