量子信息处理要求在控制量表的控制中未经表述的精度。这是由于环境中普遍存在的噪音和不可避免的控制缺陷而变得具有挑战性的,这可能会降低控制权限。在开发量子最佳控制技术方面已取得了巨大进步[1-27]。载体量子计算[28],其中大门基于几何阶段[29 - 35],是在存在噪声的情况下增强门填充的一种方法。使用几何而不是动态阶段实现量子门可以减轻噪声的影响,这些噪声会在不受干扰的控制空间中留下整体循环。几何阶段可以使用绝热[36 - 38]或非绝热驾驶[39 - 49]来计算;后者通过减少操作时间来减轻磨损。非绝热的尸体(几何)门已在超导系统[50,51],被困的离子[52,53]和氮呈(N- V)中成功实现。人类方法的一个优点是,它在选择实验友好的脉搏形状来产生大门时具有很大的灵活性。然而,尽管自动门具有沿载体循环的误差的抵抗力,但它们仍然容易受到横向上的噪声的影响,这种噪声在许多量子平台中很常见。
主要关键词