摘要近年来,量子计算机和Shor的量子算法对当前主流非对称加密方法构成了威胁(例如RSA和椭圆曲线密码学(ECC))。因此,有必要构建量子后加密(PQC)方法来抵抗量子计算攻击。因此,本研究提出了一个基于PQC的神经网络,该神经网络将基于代码的PQC方法映射到神经网络结构上,并提高具有非线性激活功能,密文的随机扰动以及Ciphertexts均匀分布的密封性遗迹的安全性。在实际实验中,本研究使用蜂窝网络信号作为案例研究,以证明基于PQC的基于PQC的神经网络可以进行加密和解密,并具有密文的均匀分布。将来,提出的基于PQC的神经网络可以应用于各种应用程序。关键字:量词后密码学,McEliece密码学,神经网络
主要关键词