研究量子力学有两个原因:它很酷,而且很有用。量子力学很酷,因为它比科幻小说家所能想象的任何想法都要奇特得多。粒子的行为像波!测量结果是随机的!能量只能具有某些离散值!分离位置的事件具有可怕的相关性!从某种意义上说,没有人真正“理解”量子力学——但它有明确的逻辑,编码在有史以来最美丽的数学中。同时,量子力学很有用,因为它控制着所有物质的结构和相互作用。它告诉我们为什么原子是稳定的,为什么放射性核会衰变,以及为什么二氧化碳是一种温室气体。量子力学是所有化学、所有材料科学和所有亚原子物理学的基础。我们可以使用量子理论来设计显微镜、激光器、太阳能电池、核反应堆和发送加密信息的安全方法。世界各地的科学家不断发现量子力学的新应用。我写这本书的目的是以一种既尊重其酷炫又尊重其实用性的方式向您介绍量子力学。即使您最初只对其中一个方面感兴趣,我希望您会发现两者相辅相成。历史上确实如此,因为实际的实验室调查逐渐迫使研究人员接受对其世界观的彻底修改——然后对量子奇异性的好奇心导致了量子信息技术的商业应用。与此同时,我担心这本书最终可能既没有传达量子力学的酷炫之处,也没有传达其实用性。这是因为量子力学不是一门容易学习或撰写的学科。它涵盖了如此多的内容,同时完全违背了我们的常识,怎么会容易呢?我需要要求您努力工作,而我已经尽力做好自己的工作,努力准备接下来的页面。我知道的关于学习量子力学的难度的最好比喻是古印度的盲人摸象寓言。1 其中一个人摸到一根象牙,认为大象就像一支长矛。另一个人摸到一条腿,认为大象就像一支长矛。
这本书是理论最低系列的第二卷。第一卷,理论的最低限度:开始做物理学,涵盖的古典力学,这是任何物理教育的核心。我们将不时将其简单地称为卷。第二本书解释了量子力学及其与古典力学的联系。本系列中的书籍与伦纳德·苏斯金德(Leonard Susskind)的视频平行,该视频可通过斯坦福大学(Stanford University)在网络上获得(www.theoricentimenminmumim.com有关清单)。同时与视频相同的一般主题时,这些书包含其他详细信息,以及视频中没有出现的主题。
波功能的崩溃的假设位于微型,量子世界和宏观世界之间。由于这种相互的位置,无法用量子力学(QM)的形式来检查崩溃过程,而经典力学也不是。这个事实使一些物理学家提出对QM的解释,以避免这种假设。但是,使用的常见程序是使背心与QM形式主义不相容。目前的工作讨论了最受欢迎的解释。表明,由于这样的假设,这些解释失败了,即预测与QM预测不同的一些实验结果。尽管如此,特别关注S. Gao的提案,这是唯一解决并试图解决明显和重大矛盾的提案。证明了几个定理是在QM中表明崩溃的假设。尽管无法解释量子形式主义,但不能否认这个假设,否则得出的结论是不同意QM的。在这里也证明了“距离崩溃”的想法是有问题的,尤其是在相对论中,这是一种误解。也就是说,在两个量子系统的纠缠中,假设其中一个系统的测量(伴随着该系统在其一个状态上崩溃)也会崩溃另一个系统,而没有测量第二个系统,这导致了矛盾。
我们理所当然地认为,我们的物理环境可以传递信息,使事物可观察和可测量。然而,任何能够做到这一点的宇宙的基本物理学都受到非常严格的限制。测量或传达任何类型的信息总是需要适当的交互环境,而这些环境必然是复杂的,涉及在不同环境中确定的其他类型的信息。这使得测量在理论上难以掌握,因为每种测量都依赖于其他类型的测量。即便如此,我们仍然可以确定确定和传达事实的物理学的一些基本功能要求。这些足以解释量子力学的独特特征,将叠加的单一演化与每当环境允许定义新事实时发生的神秘“坍缩”结合起来。此外,经典物理学的精确决定论也可以在同样的基础上理解。事实上,我们在最基本的理论中看到的大部分复杂性和微调似乎是使任何类型的信息可测量所必需的。
本文是2005年讲义的“精神儿童”幼儿园量子机械[23],它展示了dorac符号的简单,绘画扩展如何允许轻松地表达和衍生几个量子特征,即使是幼儿园也可以理解的语言。的核心是使用图片和图形转换规则来理解和得出量子理论和计算的特征。但是,这种方法让许多人想知道“牛肉在哪里?”换句话说,这是这种新的能力能够产生新的结果,还是仅仅是一种美学上令人愉悦的方法来重述我们已经知道的?这篇续集论文的目的是说‘这是牛肉!',并突出了幼儿园量子力学中主张的方法的一些主要结果,以及如何应用它们来解决实际量子计算机上的实际问题。为此,我们将主要关注已成为绘画形式主义的瑞士军刀:ZX-Calculus,这是一种图形工具,用于代表和操纵2 n维空间上的复杂线性图。首先,我们查看ZX-Calculus背后的一些想法,将其与通常的量子电路形式主义进行了比较。We then survey results from the past 2 years falling into three categories: (1) completeness of the rules of the ZX-calculus, (2) state-of-the-art quantum circuit optimisation results in commercial and open-source quantum compilers relying on ZX, and (3) the use of ZX in translating real- world stufflike natural language into quantum circuits that can be run on today's (very limited) quantum hardware.我们还从字面上获得标题,并概述了一个持续的实验,以表明ZX-Calculus使儿童能够进行尖端的量子计算。如果有的话,这将真正确认“幼儿园量子力学”不仅仅是在开玩笑。
摘要。在哲学反对派“数学模型 - 现实”的框架中研究了量子力学的案例研究。所有古典科学都遵守了关于模型和现实的基本差异的假设,从而将认识论与本体论从根本上区分开来。定理关于量子力学中没有隐藏变量的定理暗示它是“完整”的(与爱因斯坦的观点相比)。可以将一致的完整性(与戈德尔认为的数学基础中的算术与设定理论不同)可以将其解释为模型和现实的巧合。本文讨论了其基础的选项和事实:Niels Bohr提出的关于哪些量子力学研究(与所有古典科学不同)的基本假设。量子力学涉及并发展了对设备的全球空间以及所研究量子实体的局部空间的进一步识别和分离的区分,作为彼此的互补。这将导致量子力学中模型和现实的类比互补性。这些设备既是绝对的“透明”,并且与反射的量子现实同时同时同时吻合。因此,Bohr的假设将模型和现实的巧合假定为量子力学认知的必要条件,而进一步的进一步体现了其对可分离的复杂希尔伯特空间的形式主义,进而表明,暗示缺乏隐藏变量的理论(或与之相等的能源保存在量子机械机制中的节约保护”)。设备和测得的实体交换不能是能源(对于不同的能量指数),而是量子信息(作为某种明确确定的波函数),因此,可以保存节约能量保存是一种推论的广义保护定律。尤其是,本地和全球空间(在标准模型中有理由证明)与量子力学基础中模型和现实的互补性同构。在该背景上,人们可以将“量子重力”的麻烦视为量子力学假设的基本直接推论。重力只能定义为一个关系,也可以通过一对不可分离的可分离复杂的希尔伯特空间来定义,无论是两个“零件”还是整体及其部分。相反,标准模型中的所有三个基本相互作用都是“平坦的”,只有“属性”:它们仅需要一个可分开的复杂希尔伯特空间即可定义。
摘要:麦克斯韦妖是 JC 麦克斯韦于 1867 年设计的一项思想实验,目的是证明热力学第二定律不具有普遍性,因为它有一个反例。由于许多人认为第二定律提供了时间之箭,对其普遍性的威胁也威胁着时间方向性的解释。多年来,人们通过证明由于这样或那样的原因麦克斯韦妖不可能存在来“驱除”麦克斯韦妖,但无一成功。我们已(在许多出版物中)通过一般的状态空间论证证明麦克斯韦妖与经典力学兼容,而基于兰道尔论文的最新解决方案并不具有普遍性。在本文中,我们证明麦克斯韦妖也与量子力学兼容。我们通过分析一个特定的(但高度理想化的)实验装置并证明它违反第二定律来做到这一点。我们的讨论是在标准量子力学的框架内进行的;我们在有和没有投影假设的量子力学框架中给出了两个独立的论证。我们在分析中讨论了测量和擦除相互作用之间的联系,并展示了这些概念如何应用于微观量子力学结构。我们讨论了经典“宏观状态”概念的量子力学对应物,从而解释了为什么我们的量子恶魔设置不仅在微观层面上有效,而且在宏观层面上也有效,这是正确理解的。我们的分析的一个含义是,第二定律不能为时间箭头的解释提供普遍的类似定律的基础;这个解释必须在别处寻找。
量子力学实验预测和测量结果都是实值的,而抽象的量子力学形式通常依赖于使用复数。从历史上看,文献中曾多次提出在(高维)实希尔伯特空间中重新表述量子力学。然而,最近有人提出了在多部分贝尔型实验中复数的必要性,并进行了实验证明。我们重新审视这个问题,特别强调在实复合希尔伯特空间中复值量子态张量积的有效描述。
开放、尊重不同的观点、问题、个人背景、能力和经验,教师对维护这一原则负有主要责任。如果您发现与我们的学习环境相关的问题,可以使用各种资源。如果可能,我鼓励您向我提出有关特定情况或教学空间的任何建议或疑虑。或者,您可以将疑虑转达给另一位值得信赖的顾问或管理员(例如学术顾问、导师、系主任或院长)。