环境。直接研究授权的行使包括构建已开展的工作并提出一个可能阐明尚未解答的问题的研究项目。就活动的主题而言,很明显,金属及其在环境分区之间的转移(或动态)问题是我工作的核心。在使用同位素地球化学(与其他技术相结合)16年后,我仍然相信这种方法提供了通过其他方式难以获得的有价值的信息。要确信这一点,只需看看越来越多的介绍同位素测量(尤其是铅的同位素测量)的出版物就足够了;分析技术的出现促进了爆炸,这些技术比古老的 TIMS 更便宜、更快……而论文年份致力于研究沉积信息、地表水和大气颗粒,以了解这些区室之间的传输在埃罗省 (Etang de Thau),论文后期的时间主要致力于土壤、泥炭地和地衣等生物蓄积物的研究,松针或鱼,涉足与考古学直接相关的领域。然而,正是由于方法的多学科性和多样性,这些困难才得以克服,特别是当涉及到相互作用极其复杂、几乎无限的自然环境时。但这个问题最终真的那么重要吗?这需要土壤学、成岩作用、考古学、沉积学、古植物学、形态古生物学、生物学、生态毒理学、兽医学、海洋学、地貌学、化学、放射化学、磁学、数学建模等各个领域的先进知识......不用说,如果我有一些基础知识可以让我或多或少有效地与作为这些学科的专家,我还远未掌握所有的微妙之处和具体知识。在本文档的其余部分中,读者通常很难确定我自己的贡献,因为所提出的研究中不同参与者之间的相互作用非常接近。
金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
聚乙烯(PE)是一种热塑性材料。商品名是fortiflex。单体是乙烯。它是一种商品塑料。它具有不同的晶体结构,例如HDPE,LDPE和LLDPE。它是通过添加或自由基聚合产生的。它用于制造塑料容器,瓶子,袋子,塑料玩具等。
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
关于广泛接受的BCS超导理论的挑战可能是由于对自由移动电子和金属键的海洋的误解。基于这些概念,假定电阻是由导体中的电子振动和碰撞引起的。隐含地授予了该模型,BCS理论表明,库珀对耦合电子可以最大程度地减少其振动和抗性,从而导致超导性。但是,如果将电子电子负责将分子固定在金属键中,那么当电子在电流中移动时,金属结构如何保持稳定?这些模型的主要挑战是压力对电阻率和超导率的负面影响。放弃了这些模型,替代理论介绍了导体内等电式隧道的概念。在离间分子紧密的分子之间形成,这些隧道使电子能够以相同的能级跨分子移动,从而导致电流。电子,而不是自由移动,通常局限于其各自分子内的轨道,低于这些导电隧道的能级。将电子升入隧道需要能量,这表现为电阻。可以通过压缩分子间距来降低导体的电阻,从而最大程度地减少隧道和价轨道之间的间隙。随着额外的压力,该间隙可以进一步降低至零,从而导致隧道与价轨道重叠。因此,电子自然地驻留在隧道中,而无需向隧道提升能量,从而导致零电阻(零电导率)。该理论全面地解释了观察到的超导现象,包括Meissner效应,临界电流密度,临界磁场,电阻率与压力之间的逆关系以及为什么在高压下实现许多高温超导体。根据该理论,压缩分子距离是合成室温超导体的关键。最佳方法涉及工程分子结构以利用特定分子之间的吸引力,从而最大程度地减少了间隙。
T&E在今天至2050年之间开发了三种用于电池原材料的需求,尤其是锂,镍,钴和锰的情况。所有场景都假设到2050年的乘客运输充分电气化,并加速了电池电动汽车的摄取,直到现在从现在开始最大化CO 2节省。“照常业务” -BAU-场景采取了当前预期的电池大小和化学行业趋势,以及现状的私家车活动。“加速创新,更少的汽车km”(或加速 - 场景)假设向较小的电池进行了实质性转移,更快地吸收了具有较少关键金属的电池化学物质(例如锂电池,没有钴或镍(LFP)或钠离子电池),而私人汽车驱动的公里更少。最终的“积极创新和更少的汽车公里”(或激进)的情况将这些假设带到了另一个缺点,以实现更激进的变化。
迫切需要过渡到整个更可持续的社会,尤其是化学工业。[1,2],尽管进行了深入的研究,但我们目前对催化剂的激活,稳定性能,衰老,失活和再生的过程不可能应对这一挑战。[3-14]随后,无论我们在合成和表征方法方面的进步如何,新催化剂的经验发现仍然是常态。这是一个非常低效,耗时且总体上不满意的努力。关于最佳催化剂设计的量身定制设计的主张只有在建立了对工作催化剂的结构活动相关性的原子性理解后才能实现。这要求我们首先了解反应物的化学潜力如何影响催化剂的状态,以及这些气相和温度诱导的修饰如何反馈或在催化过程中进化。为了更多地阐明催化剂和反应性物种之间的相互作用,并遵循导致催化活性,实地和实时观察到高空间分辨率的活性催化剂的出现的过程。[15,16]
摘要:高纵横比硅微纳米结构在微电子、微机电系统、传感器、热电材料、电池阳极、太阳能电池、光子装置和 X 射线光学等多种应用领域中具有技术相关性。微加工通常通过反应离子干法蚀刻和基于 KOH 的湿法蚀刻来实现,金属辅助化学蚀刻(MacEtch)作为一种新型蚀刻技术正在兴起,它允许在纳米级特征尺寸中实现巨大的纵横比。到目前为止,文献中缺少对 MacEtch 的专门综述,既考虑了基本原理,也考虑了 X 射线光学应用。本综述旨在提供全面的总结,包括:(i)基本机制;(ii)在垂直于 <100> Si 基底的方向上进行均匀蚀刻的基础和作用;(iii)用 MacEtch 制造的几个 X 射线光学元件示例,例如线光栅、圆形光栅阵列、菲涅尔区板和其他 X 射线透镜; (iv) 吸收光栅完整制造的材料和方法以及在基于 X 射线光栅的干涉测量中的应用;以及 (v) X 射线光学制造的未来前景。本综述为研究人员和工程师提供了对 MacEtch 作为 X 射线光学制造新技术的原理和应用的广泛和最新的理解。
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。
