GaAs 的压力 - 电阻曲线 , (c) 6.0 mm 切角二级压砧校压结果 , (d) 2.5 mm 切角二级压砧校压结果 Fig.3 Pressure calibration of 1 000 t Walker-type apparatus: (a) ZnTe resistivity-pressure curve using 6.0 mm edge lengthsecond stage anvil; (b) GaAs resistivity-pressure curve using 2.5 mm edge length second stage anvil; (c) pressure calibration result using 6.0 mm edge length second stage anvil; (d) pressure calibration result using 2.5 mm edge length second stage anvil
来源:https://www.aeroreport.de/en/artikel/ werkstoffentwicklung-fuer-die-luftfahrt 航空部件应用示例
EZ300 2203B <IP> 创建于 2022 年 3 月 本出版物截至 2022 年 3 月为最新版本。请注意,外观和规格可能会发生变化,恕不另行通知。
Solid phase processes Solid phase and welding processes 20E, 21E, 22E High temperature oxidation and high temperature corrosion 21D Materials and Society 20B Materials and Society Techniques of Material Characterization and Process Evaluation 22E Hydrogen and Battery Related Materials 20M Fundamentals of Biomaterials and Bio responses 22K Biomaterial design and development and clinical Biomaterials Development and Clinics 20K Microstructure control 20D Heat Resistant Materials 22P热电材料20M热力学,相位平衡,相图21F半导体和Terahertz Light 20L表面,界面和催化剂20C腐蚀和保护21C,22C复合材料21p分析,分析,评估分析 /评估分析 /评估20D < / div < / div < / div < / div < / div < / div < / div> < / div < / div> < / div> < / div < / div < / div>
摘要:同轴激光金属沉积(LMD-w)是对已在生产中建立的增材制造工艺的宝贵补充,因为它允许一个与方向无关的工艺,具有高沉积速率和高沉积精度。然而,在工艺开发过程中,缺乏关于调整工艺参数以构建无缺陷部件的知识。因此,在这项工作中,使用铝线 AlMg4,5MnZr 和不锈钢线 AISI 316L 进行了同轴 LMD-w 工艺开发。首先,确定了导致无缺陷工艺的参数组合的边界。工艺参数单位长度能量和速度比之间的比例对于无缺陷工艺至关重要。然后,使用回归分析分析了工艺参数对两种材料的单个珠子高度和宽度的影响。结果表明,线性模型适合描述工艺参数与珠子尺寸之间的相关性。最后,提出了一个与材料无关的公式来计算增材工艺所需的每层高度增量。对于未来的研究,这项工作的结果将有助于使用不同材料的工艺开发。
Acid Regeneration Plants for hydrochlorid and mixed acid in steel pickling or mining, using a "Zero Effluent" approach Removal of nitrogen oxides (NOx) Reduction of CO 2 in strip annealing and galvanizing with electrically heated furnaces “Green Steel CGL” Lines for AHSS steel for automotive light-weight design Reduction of CO 2 in heating processes with H 2燃烧器
3.4 D Ò 2À^ Ó? ‹x I ÖP Ò 2 Ô 去 ¨ ‹Œ Õ{ (3) P ,- DDDDDDDDDDDDDDDDDDDDDD DDDDDDD
摘要:对采用选择性激光熔化 (SLM) 技术制备的 Inconel 718 (IN718) 高温合金样品进行不同的加热循环,并研究其微观结构特征。选定的加热速率范围从 10 ◦ C / min 到 400 ◦ C / s,代表焊接增材制造试件热影响区 (HAZ) 中的不同区域。采用差示热分析 (DTA)、高分辨率膨胀仪以及激光共聚焦和电子显微镜相结合的方法研究了第二相的析出和溶解以及微观结构特征。为此,从与支撑接触的底部到顶表面研究了增材制造试件的微观结构。结果表明,在高加热速率下,γ”和δ相的溶解延迟并转移到更高的温度下。微观结构分析表明,枝晶间区域的 Laves 相在靠近样品表面的特定区域分解。确定这些区域的厚度和面积分数与施加的加热速率成反比。提出了一种可能的机制,该机制基于加热速率对枝晶间区域和枝晶核心中 Nb 扩散的影响,以解释观察到的微观结构变化。
摘要:采用激光定向能量沉积 (L-DED) 技术制备了接近全密度且无裂纹的 AISI H13 热作工具钢。研究了两种不同的热处理方案,即从成品 (AB) 状态直接回火 (ABT) 和回火前系统化和淬火 (QT),并报告了它们对 L-DED H13 的微观结构、硬度、断裂韧性 (K app ) 和回火抗力的影响。为此,确定了最佳奥氏体化制度,并制作了回火曲线。在相似的硬度水平 (500 HV1) 下,QT 部件的 K app (89 MPa √ m) 高于 ABT (70 MPa √ m)。然而,这两个部件获得的断裂韧性值与锻造 H13 相当。考虑到高温奥氏体化过程中发生的微观结构均质化和再结晶,讨论了 QT 对应部件中稍大的 K app。 ABT 材料在 600 ◦ C 下的回火抗力与 QT 材料相比略有改善,但对于更长的保温时间(长达 40 小时)和更高的温度(650 ◦ C),ABT 表现出优异的耐热软化性能,这是由于其马氏体亚结构(即块尺寸)更细小、二次碳化物尺寸更细小以及二次 V(C,N)碳化物的体积分数更大。