外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
摘要:高纵横比硅微纳米结构在微电子、微机电系统、传感器、热电材料、电池阳极、太阳能电池、光子装置和 X 射线光学等多种应用领域中具有技术相关性。微加工通常通过反应离子干法蚀刻和基于 KOH 的湿法蚀刻来实现,金属辅助化学蚀刻(MacEtch)作为一种新型蚀刻技术正在兴起,它允许在纳米级特征尺寸中实现巨大的纵横比。到目前为止,文献中缺少对 MacEtch 的专门综述,既考虑了基本原理,也考虑了 X 射线光学应用。本综述旨在提供全面的总结,包括:(i)基本机制;(ii)在垂直于 <100> Si 基底的方向上进行均匀蚀刻的基础和作用;(iii)用 MacEtch 制造的几个 X 射线光学元件示例,例如线光栅、圆形光栅阵列、菲涅尔区板和其他 X 射线透镜; (iv) 吸收光栅完整制造的材料和方法以及在基于 X 射线光栅的干涉测量中的应用;以及 (v) X 射线光学制造的未来前景。本综述为研究人员和工程师提供了对 MacEtch 作为 X 射线光学制造新技术的原理和应用的广泛和最新的理解。
随着新的州法规要求在婴儿食品中披露重金属水平,以及增加的消费者,媒体和监管审查,医疗提供者应预期有关父母和照料者的问题会增加。借鉴了解决消费者查询的七年经验,清洁标签项目(一个致力于产品标签透明度的国家非营利组织,以及针对婴儿食品和婴儿配方中的重金属研究的最大研究的背后的组织 - 已经确定了主要问题提供者可能面临的主要问题。此资源将复杂的问题变成了可行的建议,从而为儿童健康做出了明智的决定。
摘要Burckhardt Compression Holding AG总部位于温特图尔,是一家具有国际活跃的往复式压力机制造商,在其Laby®往复式压缩机中使用三件式活塞。由于其铸造设计,活塞的重量很高,这限制了活塞的大小,特别是对于大直径。因此,正在寻找解决方案在轻质设计中使用金属添加剂制造工艺制作活塞,以抵消这些挑战。在各个科学和工业领域应用的减轻体重的创新技术之一是激光直接金属沉积(DMD)。因此,一个项目是从Burckhardt压缩开始的,以降低质量,从而实现更高的工作速度。这项研究提供了一个工作流程,可通过直接金属沉积(DMD)制造1.4313的轻质活塞,直径约为342 mm,高度为140 mm。活塞的特征是不同的片段,这些片段在传统上和附加性制造中以克服机器限制。活塞皇冠被连接到添加剂制造的部分,并由CO 2激光焊接密封。降低DMD的激光功率可降低温度,因此,锰和硅的氧化和降低载气流量可提高堆积速率,并降低了湍流诱导的氧化。每层交替的进料方向提高了几何准确性,并避免了在锋利的角落积累的材料。一种方法被发现在堆积方向上定量地表明半径的几何精度。选择了激光焊接的焊接类型和接缝以实现良好的力流;但是,需要夹紧装置。为了减少隐藏的T关节的缺口效应,考虑了双重焊接策略。该设计使40%的重量减轻,与铸件活塞相比,重量为40 kg,重量为24千克。的金理分析和3D扫描。该研究显示了DMD的局限性和挑战以及如何通过部分分割克服机器的局限性。
增材制造工艺在工业领域越来越重要。特别是直接金属沉积 (DMD) 是一种很有前途的制造技术,因为它可以实现广泛的应用,例如从头开始制造零件、在传统加工的原始零件上添加材料,甚至高效修复高价值零件 [1]。除了许多优点外,该工艺的可控性仍然很困难,导致内部缺陷、几何偏差或微观结构不均匀。相变、粉末-气体动力学和参数不确定性等多种物理现象会影响工艺行为并使工艺处理复杂化。因此,需要进行大量的实验活动来确定具有可接受几何和材料性能的工艺参数
本工作采用了一种创新技术——电弧增材制造 (WAAM),这是一种定向能量沉积技术,用于裂纹钢部件的疲劳强化。在高周疲劳载荷条件下测试了不同的带有中心裂纹的钢板,包括参考板、用 WAAM 修复的具有沉积轮廓的钢板以及用 WAAM 修复并随后进行加工以降低应力集中系数的钢板。进行了相应的有限元模拟,以更好地理解 WAAM 修复的机理。参考板上现有的中心裂纹在 94 万次循环后扩展并导致断裂,而两块 WAAM 修复板中的中心裂纹并未扩展,这是由于净横截面积增加以及沉积过程引起的压应力。然而,在第二块钢板中,由于局部应力集中,在 WAAM 轮廓根部出现了新的裂纹,疲劳寿命达到了 220 万次循环(是参考板的 2.3 倍)。另一方面,第三块钢板由于加工轮廓光滑,经受了 900 多万次疲劳循环,没有出现明显的退化。这项研究的结果表明,WAAM 修复技术在解决钢结构疲劳损伤方面具有巨大潜力。
已开采和拟开采矿床的金属矿石品位一直在下降,5 因此每单位最终金属产品产生的废弃物量增加。再开采的来源包括尾矿、废石、酸性矿山排水和相关的处理污泥、矿石加工副产品和煤灰。最常见的具有可再生能源金属再开采潜力的矿山废弃物是尾矿。6 《全球尾矿评估》7 估计,全世界有 8,500 个活跃、不活跃和已关闭的尾矿储存设施。使用该估计值并根据较少数量设施的报告量推断,全球储存的尾矿约为 217 立方公里(km3)。虽然全球储存的尾矿总量存在不确定性,但世界各地金属矿山显然不缺尾矿——但尾矿中的可再生能源金属含量以及提取这些金属的经济和环境可行性在很大程度上是未知的。
在脱碳的英国航空中,氢将是至关重要的工具。这在2022年7月发布的《零零策略及其相关文件》中得到了认可。这些包含许多氢承诺:第一个直接通过承诺实施电子甲苯亚货物作为可持续航空燃料(SAF)授权的一部分(1,而第二次)隐含和间接地是通过承诺通过在2030年在英国在英国拥有零排放路线的承诺。随后,政府提出,作为第二次SAF授权咨询的一部分,是特定的E-Kerosene submandate级别,但这是基于缺陷的假设。本文提出了有关这些目的的细节,以及提供有关我们为何决定这些细节的证据。该证据封装了现任政府已经做出的其他承诺。
1.3 T HIS W ORK ................................................................................................................................................ 21
T&E在今天至2050年之间开发了三种用于电池原材料的需求,尤其是锂,镍,钴和锰的情况。所有场景都假设到2050年的乘客运输充分电气化,并加速了电池电动汽车的摄取,直到现在从现在开始最大化CO 2节省。“照常业务” -BAU-场景采取了当前预期的电池大小和化学行业趋势,以及现状的私家车活动。“加速创新,更少的汽车km”(或加速 - 场景)假设向较小的电池进行了实质性转移,更快地吸收了具有较少关键金属的电池化学物质(例如锂电池,没有钴或镍(LFP)或钠离子电池),而私人汽车驱动的公里更少。最终的“积极创新和更少的汽车公里”(或激进)的情况将这些假设带到了另一个缺点,以实现更激进的变化。
