摘要:神经电极是神经科学、神经疾病和神经机接口研究的核心设备,是连接大脑神经系统和电子设备的桥梁。目前使用的大多数神经电极都是基于刚性材料,其柔韧性和拉伸性能与生物神经组织有显著不同。本研究采用微加工技术开发了一种基于液态金属 (LM) 的 20 通道神经电极阵列,该阵列采用铂金属 (Pt) 封装材料。体外实验表明,该电极具有稳定的电性能和优异的机械性能,如柔韧性和弯曲性,使电极与颅骨形成保形接触。体内实验还使用基于 LM 的电极从低流量或深度麻醉下的大鼠记录了脑电信号,包括由声音刺激触发的听觉诱发电位。使用源定位技术分析了听觉激活的皮层区域。这些结果表明,基于 20 通道 LM 的神经电极阵列满足脑信号采集的需求,并提供支持源定位分析的高质量脑电图 (EEG) 信号。
R. Dong、Prof. S. Liu、Prof. X. Jiang 哈尔滨工业大学生命科学与技术学院 中国哈尔滨市南岗区益矿路 2 号 150001 电子邮件:shaoqinliu@hit.edu.cn; jiang@sustech.edu.cn 董荣军,杭聪,陈哲,刘晓玲,钟玲,齐建军,黄勇,蒋晓玲教授 南方科技大学生物医学工程系 中国广东省深圳市南山区学院路 1088 号 518055 王林博士,王林教授,陆英教授 中国科学院脑连接组与操控重点实验室,脑认知与脑疾病研究所 中国科学院深圳先进技术研究院 深港脑科学研究院-深圳基础研究中心 深圳 518055,中国 电子邮件:lp.wang@siat.ac.cn; luyi@siat.ac.cn
在本文中,我们提出了一种波导集成干涉传感器,其中在单个等离子体波导中传播的两种等离子体模式之间发生干涉。为了进行传感,通过增加金属电极之间的距离重新排列了垂直等离子体槽波导。因此,与每个金属电极相关的等离子体模式(通常形成混合等离子体槽模式)已被分离,使它们能够在金属电极的相对边缘上独立传播。这允许实现马赫-曾德尔干涉仪,其中光通过传统的锥形结构从光子波导耦合进出结构。值得注意的是,支持等离子体模式的金属电极也可以用作电触点。通过在它们之间施加直流电压,可以有效地分离漂移到其中一个金属电极的离子。因此,马赫-曾德尔干涉仪的一条臂会经历更高的损耗和相位积累,导致马赫-曾德尔干涉仪不平衡和传输下降。这里,透射率的任何变化仅指液体中的离子量,因为干涉仪的输出信号通过与被检查的液体溶液直接接触的参考臂标准化为液体。被检查的液体中的离子总量保持不变,但是,当施加电压时离子会向其中一个金属电极漂移,因此间隙中的离子分布会发生变化。因此,可以通过干涉仪的透射测量来监测液体中离子浓度的任何变化。所提出的配置对干涉仪两个臂之间的透射率变化高度敏感,即使在 1550 nm 的电信波长下也能实现超过 12460 nm/RIU 的创纪录灵敏度。预计中红外波长的灵敏度将进一步增强,这对应于大多数化学和生物化合物的最大吸收峰。
这些大型电极无法充分采样大脑活动 à 接触面积更小,时空分辨率更高!但为了获得更好的空间分辨率而将金属电极缩小到更小的直径会损害其记录能力。
我们研究了由附着在磁绝缘体和金属电极上的单级量子点组成的混合系统的自旋热电特性。磁绝缘体被认为是铁磁类型的,是磁振子的源,而金属铅是电子的储存器。磁绝缘体和金属电极之间的温度梯度会诱导流过系统的自旋电流。产生的磁振子(电)型自旋电流通过量子点转换为电(磁振子)自旋电流。将流过系统的自旋和热流扩展至线性阶,我们引入了基本的自旋热电系数,包括自旋电导、自旋塞贝克和自旋珀尔帖系数以及热导。我们在两种情况下分析了系统的自旋热电特性:在大型点库仑排斥极限下以及当这些相互作用有限时。
有机激光已经经历了数十年的发展。已经证明了具有出色的光学增益特性的无数材料,包括小分子,树枝状聚合物和聚合物。也已应用各种谐振器几何形状。在共享有机材料的解决方案加工性和机械功能特征的优势时,有机光增益介质还提供了有趣的光学特性,例如通过化学功能化和固有的大型光学增益系数来可调性。他们为在生物成像,医学,化学和生物传感,抗抗议应用或展示领域的不同应用提供了前景。然而,由于有机半导体的固有缺点,例如,适度的载流子迁移率,长期寿命的激发状态吸收以及源于设备中的额外损失(例如,金属电极吸收,金属电极吸收),导致电泵送有机激光器的实现仍然是一个挑战。在此,讨论了有机激光器的过去发展,强调了材料和空腔在电泵送有机激光器的目标方面的重要性。讨论了最新的进展和解决挑战的可能方法。
量子纠缠状态是量子算法的重要成分。可以使用各种物理系统来获得此类状态并操纵它们。但是,凝结物理学的实现似乎是最有前途的,因为在这些系统中可以实现[1]。我们调查了两个量子点,这些量子点与超导电极和金属电极或铁磁检测器相连[2,3],如图1。在这样的系统中,超导电极可以用作自然存在的状态库珀对的来源,该库珀对处于单重旋转状态。电子对能够隧道隧道并占据单独的量子点,而它们的两个旋转都可以纠缠。由于使用纠缠方法,只有使用铁磁检测器直接测量自旋极化电流,才可以通过直接测量自旋偏振电流进行纠缠。