透明植入式设备将神经记录和光学模式相结合,在神经科学和生物医学工程领域引起了广泛关注。用于电生理学的不透明金属电极阵列会阻碍光学成像并导致光电伪影,使其难以与光遗传学相结合。本文介绍了一种无光电伪影、高导电性和透明的聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 电极阵列,作为有前途的神经植入物。与应用于植入工具的其他透明材料相比,本研究开发的技术通过低成本、超简便的方法提供了透明的神经接口。由于采用了简单的乙二醇浸渍工艺,该设备表现出优于其他研究的光学、机械和电气特性。通过将其光刺激效率和光电伪影程度与传统的薄金电极在体外和体内进行比较,突出了该设备的性能。该平台可以比任何其他候选材料更有效地组装透明神经接口,因此具有许多潜在的应用。
有机发光二极管 (OLED) 显示器的广泛使用推动了 OSC 逐渐渗透到日常生活中。[5] 低功耗、重量轻、亮度高、发光效率高和响应时间快等一系列技术优势推动了 OLED 作为传统液晶显示器的替代品的应用。[6] OLED 是一种纳米厚的半导体器件,在施加合适的电偏压时能够产生光子。然而,OLED 的垂直结构要求光子至少穿过一个电极,由于光腔效应和电极透明度有限,这对器件特性造成了很大限制。[7,8] 在这一背景下,有机发光晶体管 (OLET) 在过去十年中备受关注,因为它能够通过简单的平面结构将晶体管的逻辑开关功能与光发射相结合。 [6,9,10] 最重要的是,光发射可以调节到远离金属电极的位置。[11] 因此,对于 OLED,由于可以避免不希望的猝灭和光学效应,因此可以预测光学效率可能会提高。此外,平面 OLET 结构为实现具有复杂功能的集成系统提供了关键特性。[12,13] 在 OLET 中,
摘要 — 本文第一部分介绍了 5 纳米碳纳米管场效应晶体管 (CNFET) 静态随机存取存储器 (SRAM) 单元的尺寸和参数优化。在此基础上,我们提出了一种由原理图优化的 CNFET SRAM 和 CNT 互连组成的碳纳米管 (CNT) SRAM 阵列。我们考虑由金属单壁 CNT (M-SWCNT) 束组成的 CNFET SRAM 单元内部的互连来表示金属层 0 和 1 (M0 和 M1)。我们研究了考虑 CNFET 器件、M-SWCNT 互连和金属电极钯与 CNT (Pd-CNT) 触点的 CNFET SRAM 单元的布局结构。探索了两种版本的单元布局设计,并在性能、稳定性和功率效率方面进行了比较。此外,我们实现了一个 16 Kbit SRAM 阵列,由提出的 CNFET SRAM 单元、多壁 CNT (MWCNT) 单元间互连和 Pd-CNT 触点组成。这种阵列表现出明显的优势,其读写总能量延迟积(EDP)、静态功耗和核心面积分别为采用铜互连的7nm FinFET-SRAM阵列的0.28×、0.52×和0.76×,而读写静态噪声裕度分别比FinFET高6%和12%。
石墨烯场效应晶体管(GFET)由于其在生物分子信号扩增中的出色特性而被广泛用于生物传感,在临床诊断中具有高度敏感性和高温和护理测试的潜力。然而,复杂的制造步骤中的困难是GFET的进一步研究和应用的主要局限性。在这项研究中,引入了一种模块化制造技术,以在3个独立的步骤内构建微流体GFET生物传感器。纳入了低熔化的金属电极和复杂的流道,以维持石墨烯的结构完整性并促进后续的感应操作。实用的GFET生物传感器具有出色的长期稳定性,并且在各种离子环境中有效地表现。它还表现出高灵敏度和选择性,可在10 FM浓度下检测单链核酸。此外,当与CRISPR/CAS12A系统结合使用时,它促进了以1 FM浓度的核酸无扩增和快速检测。因此,据信这种模块化的微流体GFET可能会揭示在各种应用中基于FET的生物传感器的进一步发展。
光伏应用中的光学操控方法主要可分为光谱控制和光学设计。通过控制各种共轭分子或钙钛矿的带隙,可以制造出色彩鲜艳或高度透明的装置,用于建筑一体化光伏应用。[2,8,9] 使用薄金属电极(< 20 纳米)和主要收集紫外线 (UV) 和近红外 (NIR) 光的活性层,可以得到高性能半透明光伏 (ST-PV)。[10 – 17] 新结构与低带隙活性层材料的集成,可以提供高性能可见光透明 OPV。[18 – 24] 例如,Yang 等人使用薄 Au/Ag 电极和透明空穴传输框架策略,展示了一种 ST-OPV,其 PCE 为 12%,平均可见光透射率 (AVT) 为 20%。 [25] 多种光捕获方法,包括加入抗反射层 [26,27]、微腔 (MC) 结构 [28]、分布式布拉格反射器 (DBR) 和光子晶体 (PC) [29,30] 以及纳米结构 [31,32],进一步优化了此类设备的光收集和光学响应。Shen 及其同事回顾了 MC 在 OPV 中的应用,[28]
迫切需要高性能可充电电池来满足电网规模固定式储能的需求。高温电池系统,例如 Na-S 电池、Na-NiCl2 电池(ZEBRA 电池)和液态金属电极 (LME) 电池,表现出高功率密度和高循环稳定性等优点,但也受到高工作温度的影响。我们最近发明了熔融锂金属电池的新概念,它由液态锂阳极、合金(Sn、Bi、Pb)液态阴极和锂离子导体作为固体电解质组成。这里我们展示了一种在相对较低的 210 C 温度下工作的熔融金属氯化物电池。该电池设计包括熔融(AlCl3-LiCl)阴极、固体电解质(石榴石型 Li6.4La3Ta0.6Zr1.4O12(LLZTO)陶瓷管)和熔融锂阳极。组装的 AlCl3-LiCl||LLZTO||Li 全电池的平均放电电压为 1.55 V,能量效率为 83%,已成功循环 100 次(800 小时),容量没有衰减。电池的理论比能为 350 Wh/kg,根据电极材料的重量估计成本为 11.6 美元/千瓦时。考虑到高性能、高安全性、低工作温度和原材料成本低,我们的新型熔融电极电池系统为固定式储能开辟了新的机会。
抽象过渡金属二甲化合物(TMD)分层半导体在光子,电子,光电和传感器设备的设计中具有巨大的潜力。然而,从近红外(NIR)到短波长红外(SWIR)的TMD的子频率光吸收不足以超出带隙极限。在此,我们报告说,MOS 2 /AU异质结构的子频率光响应可以通过所采用的电极制造方法进行牢固调节。我们在MOS 2 /AU异质结构中观察到多达60%的亚带gap吸收,其中包括杂交界面,其中通过溅射沉积应用了AU层。sub-Bandgap光的吸收大大增强是由于MOS 2和AU形成的平面腔。因此,可以通过改变MOS 2层的厚度来调整吸收光谱。在SWIR波长范围内的光电流增加,由于吸收增加而增加,这意味着可以从可见到SWIR的宽波长检测。我们还以1550 nm的激发波长达到了快速的光响应(〜150 µs)和高响应性(17 mA W -1)。我们的发现展示了一种使用金属电极工程的光学性质调制方法,并在宽带2D材料中实现SWIR光电进行。
使用具有较高能力和功率密度的电极的开发,需要对材料界面和体系结构进行全面的理解和精确控制。电化学力学在这种复杂界面的形态演化和稳定性中起着不可或缺的作用。电极材料的体积变化和电极/电解质界面的化学相互作用导致不均匀应力场和结构上不同的相互作用,从根本上影响了基本的运输和反应动力学。这种机械耦合的起源及其对降解的影响独特取决于界面特征。在这篇综述中,分析了固体 - 液界面和固体 - 固体界面上化学机械耦合和故障机制的独特性质。对于锂金属电极,表面/微结构异质性在液体电解质中的固体电解质相(SEI)稳定性(SEI)稳定性和树突生长以及接触损失和用固体电解质的纤维触摸渗透的关键作用。在复合电极方面,根据微结构耦合的电化学机电属性的关键差异被描述为基于互化和转换化学的化学属性。从液体转移到此类阴极中的固体电解质,我们强调了固体 - 固体接触对传输/机械响应,电化学性能以及诸如颗粒裂纹和分层等故障模式的显着影响。[doi:10.1115/1.4057039]最后,我们介绍了未来的研究方向的看法,以及解决实现下一代锂金属电池的潜在电化学机械挑战的机会。
事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
摘要:三氧化钼 (MoO 3 ) 是一种重要的过渡金属氧化物 (TMO),由于其在现有技术和新兴技术(包括催化、能源和数据存储、电致变色器件和传感器)中的潜力,在过去几十年中得到了广泛的研究。最近,人们对二维 (2D) 材料的兴趣日益浓厚,与块体材料相比,二维材料通常具有丰富的有趣特性和功能,这导致了对 2D MoO 3 的研究。然而,大面积真正的 2D(单原子层至几原子层厚)MoO 3 尚未实现。在这里,我们展示了一种简单的方法来获得晶圆级单层非晶态 MoO3,该方法使用 2D MoS2 作为起始材料,然后在低至 120°C 的基板温度下进行紫外臭氧氧化。这种简单而有效的过程可产生具有晶圆级同质性的光滑、连续、均匀和稳定的单层氧化物,这通过几种表征技术得到证实,包括原子力显微镜、多种光谱方法和扫描透射电子显微镜。此外,使用亚纳米 MoO3 作为夹在两个金属电极之间的活性层,我们展示了最薄的基于氧化物的非挥发性电阻开关存储器,该存储器具有低压操作和高开/关比。这些结果(可能可扩展到其他 TMO)将使进一步探索亚纳米化学计量 MoO3 成为可能,扩展超薄柔性氧化物材料和器件的前沿。关键词:晶圆级、单层、氧化钼、非晶态、电阻开关存储器