将光限制到原子尺度的能力对于光电子学和光学传感应用的开发以及纳米级量子现象的探索至关重要。厚度仅为几个原子层的金属纳米结构中的等离子体可以实现这种限制,尽管亚纳米级的制造缺陷阻碍了实际发展。在这里,通过预图案化硅基板并外延沉积厚度仅为几个原子层的银膜制造的原子级薄结晶银纳米结构中展示了窄等离子体。具体而言,对硅晶片进行光刻图案化以引入按需横向形状,对样品进行化学处理以获得原子级平坦的硅表面,并外延沉积银以获得具有指定形态的超薄结晶金属膜。按照此程序制造的结构可以对近红外光谱区域的光场约束进行前所未有的控制,这里通过观察具有极端空间约束和高品质因子的基阶和高阶等离子体来说明这一点,这些因子反映了金属的晶体性。本研究在空间约束程度和品质因数方面取得了实质性的改进,这将有助于设计和利用原子级纳米等离子体器件用于光电子、传感和量子物理应用。
摘要 纸基传感器上金属阳离子的电化学检测因其易于制造、一次性使用和成本低廉而被认为是当前光谱和色谱检测技术的一种有吸引力的替代方案。本文设计了一种新型炭黑 (CB)、二甲基乙二肟 (DMG) 墨水作为电极改性剂,与 3 电极喷墨打印纸基体结合使用,用于水样中镍阳离子的吸附溶出伏安电分析。在没有常用的有毒金属薄膜的情况下,所开发的方法提供了一种新颖、低成本、快速且便携的吸附溶出检测方法来进行金属分析。该研究展示了一种在纸基传感器上检测镍的新方法,并通过限制使用有毒金属薄膜,在纸基金属分析领域的先前工作的基础上取得了进展。首次通过增加活性表面积、电子转移动力学和与非导电二甲基乙二肟膜相关的催化效应,提高了器件的灵敏度,并通过电分析进行了确认。首次使用 CB-DMG 墨水可以在电极表面选择性预浓缩分析物,而无需使用有毒的汞或铋金属膜。与类似报道的纸基传感器相比,实现了检测限 (48 µg L -1 )、选择性和金属间干扰的改善。该方法用于检测水样中的镍,远低于世界卫生组织 (WHO) 标准。
大多数实心电解质(SES)对于全稳态电池(ASSB)应用有望具有狭窄的电化学稳定性窗口。1因此,当采用高能量密度电极材料(例如锂金属阳极)时,观察到寄生电解质侧反应。2因此,必须确定这种反应引发哪些电势并形成哪种化学物质作为分解产物(导致固体电解质相间,SEI)很重要。在这项研究中,引入了一种新的Operando实验方法,以通过使用硬X射线使用光电子光谱来研究此类反应。这种实验方法使我们能够调查埋在薄金属膜(例如6 nm镍(镍)中,它部分透明的电子)充当工作电极。使用基于硫化物的LI 6 PS 5 Cl固体电解质证明了这种方法的可行性。实验表明,侧反应已经开始为1.75 V(Vs li + /li),导致相当大的Li 2 s形成,尤其是在电压范围内1.5-1.0 V. SEI的异构 /分层微观结构,观察到了SEI的异质 /分层微观结构(例如,Prefinential Li 2 O和当前收藏家附近的Li 2 S沉积物)。还观察到了侧反应的可逆性,因为在2-4 V电势窗口中分解了Li 2 O和Li 2 S,产生了氧化的硫种类,亚硫酸盐和硫酸盐。实验方法有望在动态条件下用于各种固体电解质和电流收集器组合的电解质分解反应。
摘要。使用Magnetron-ION溅射,将一层金属钼1–2μm厚的金属钼沉积在环境温度下惰性氩气的大气中,该硅通过Czochralski方法生长的硅单晶表面。根据实验的结果,纯Mo层厚度为2μm,通过磁控蛋白的反应性溅射从高度纯的金属钼靶中沉积到冷硅晶片底物上,厚度为1.5 mm。仅在严格定义的钼金属沉积速率对应于体积中给定的巨质压力的情况下,它们的电导率和透明度也很高。溅射目标是直径为40 mm的磁盘,厚度为3-4 mm。产品处理的技术周期包括目标清洁的阶段。在不添加氧气的情况下将金属MO靶标溅射在纯氩AR中,可以促进具有非常好的电导率的不透明金属膜的形成。X射线衍射分析具有Mo金属涂层表面的硅单晶体显示了Moleybdenum-Silicon系统中的MO3SI和MOSI.65的化合物。硅硅硅酸盐被发现在温度范围1850÷1900°C的温度范围内经历同类肌转化,而低温品种 -MOSI2具有四方结构。 -MOSI2的高温形式具有六边形结构。使用原子扫描显微镜进行研究的结果表明,硅原子的链与MO原子连接,形成沿平行X和Y轴的MO结构的棱镜形成的锯齿形。
用于气体和蒸气分离膜的气体分离的膜是一项良好的,节能和不断发展的技术。使用多硫酮的空心纤维膜(带有商业名称Prism)用于H 2恢复的天然气分离技术首先是由Preaea Inc.(现在是Air Products的子公司)(Lonsdale,1982; Air Products Advanced Pri)引入并于1979年成功进行了商业化。从那时起,气体分离膜市场一直在迅速增长,并有望随着技术的进步而进一步增长。在过去的几十年中,多种聚合物膜(例如多硫酮,聚酰亚胺,乙酸纤维素)和聚(二甲基硅氧烷)硅橡胶已用于气体或蒸气分离(Galizia等,2017)。特定的应用包括1)从氮,甲烷等中回收氢。; 2)氧气产生氮; 3)天然气产生甲烷; 4)从氮气中恢复(例如Olefins的蒸气); 5)去除挥发性有机化合物(VOC); 6)空气和天然气脱水; 7)olefin/paraffin(例如乙烯/乙烷,丙烯/丙烷)分离; 8)烃(甲烷,乙烷,丙烷等)分离; 9)二氧化碳捕获来自频道气体(主要是氮)。这些应用已受到显着关注,并解释了大多数基于膜的天然气分离行业。分离技术和材料设计的进步将有助于膜领域的生长和发展。微孔无机膜可以有效地用于催化反应器和煤气燃料等应用中。基于致密的陶瓷膜,致密的金属膜和微孔膜的无机膜也进行了广泛的研究(Lin,2019)。通常用于制造微孔无机膜的材料包括氧化铝(Al 2 O 3),二氧化硅(SIO 2),氧化氧化氧化氧化膜(ZRO 2),沸石和碳。最近,由于有机和无机材料的协同作用,由于有机和无机材料的协同效应,多孔无机填充剂分散在密集的聚合物基质中。各种多孔无机纳米材料,例如氧化石墨烯(GO)和金属有机框架(MOF)已被用作MMMS中的填充剂,从而提高了渗透和分离特性(Qiao等人,2020年)。
oft和可拉伸的电子设备正在集成到下一代电子设备中,其中包括软机器人1,可穿戴电子2,生物医学设备3和人类 - 机器人界面4、5。在开发可拉伸传感器6,显示7,加热器8,储能设备9和集成电路(ICS)10的新颖材料和架构中取得了令人鼓舞的进步。但是,该领域仍然缺乏具有集成计算,有效的数据传输和微型电损失的高度可拉伸的多层电子电路。商业电子产品可以提供各种不引人注目的,廉价的,高性能的ICS,从微控制器到放大器,但是使用这些ICS创建可拉伸的电路需要每个电路元件之间的强大界面。在这项工作中,我们通过采用双相式镀机合金(BGAIN)来介绍可伸缩的印刷电路板(PCB)组件的可拉伸版本,从而创建了高度可拉伸的导电痕迹和柔软的刚性电子组件之间的耐用接口。正在积极研究三种主要策略,以实现可拉伸的电子设备:基于结构的可拉伸导体,本质上可拉伸的导体和导电复合材料。高导电性,不可延迟的薄金属膜可以几何图案化,以获得平面外变形和线性弹力10-13。尽管它们与传统的电子合并良好接触,但它们的可伸缩性和组分的面积密度通常受到限制。一种流行的方法,放置常规电子组件本质上可拉伸的导体,例如室温液体金属(Eutectic Callium-Indium,Egain 14),离子诱导器15和导电聚合物16,17-不需要复杂的图案,但每个苦难都需要复杂的,但每个遭受了几种苦难,包括几种吸水物,包括泄漏,脱落,脱何,脱何,递减,递减,递减和低电导率。导电夹杂物聚合物复合材料也可以在没有复杂图案的情况下拉伸,但通常患有最大菌株和高电阻18、19。此外,在菌株20、21期间,关于可拉伸导体的报告相对较少。已经大力努力在可伸缩零件和市售的高性能ICS之间建立可靠的连接。
- 2011-2012 ASME 应用力学部“集成结构”技术委员会 - 2013 年至今 ASME 应用力学部“软材料”技术委员会 - 提案审查员 - 新加坡国家研究基金会 - 欧洲研究理事会 - NSF 土木、机械和制造创新(CMMI)部 - NSF 理解神经和认知系统的综合策略(NCS)计划 - DOE 基础能源科学(BES)计划 - NASA 早期职业教师(ECF)奖励计划 - NASA 人类探索研究机会(HERO) - AFOSR 多功能材料和微系统力学(M^4)计划 - 加拿大自然科学与工程研究委员会(NSERC) - 奖学金小组成员 - 国防科学与工程研究生(NDSEG)评估小组 - DOD 科学、数学与转化研究(SMART)评估小组 - Science、Nature Nanotechnology、Proceedings of the National Academy of Sciences、Nature Communications、Advanced Materials 的技术审查员先进功能材料、纳米快报、ACS Nano、科学报告、应用物理快报、固体力学和物理学杂志、固体与结构国际杂志、极端力学快报、材料研究杂志、Acta Materialia、生物医学微设备、生物医学工程学报 出版物:Google Scholar 链接:https://scholar.google.com/citations?user=mj-O9psAAAAJ&hl=en 粗体斜体代表 Nanshu Lu。粗体表示 Nanshu 的博士和博士后导师。斜体突出显示在研究进行时由 Nanshu 指导的 UT 学生、博士后和访问学者。† 表示贡献相同。* 表示通讯作者。 A. 加入 UT 之前发表的同行评审期刊论文 1. J. Yoon、Z. Zhang、N. Lu 和 ZG Suo *,“涂层对增加柔性基板上岛屿临界尺寸的影响,”Applied Physics Letters,第 90(21) 卷,第 211912 页,2007 年 5 月。http://dx.doi.org/10.1063/1.2742911 2. N. Lu、JI Yoon 和 ZG Suo *,“可拉伸基板上图案化的刚性岛的分层,”International Journal of Materials Research,第 3 卷,第 211912 页,2007 年 5 月。http://dx.doi.org/10.1063/1.2742911 98(8),第 717-722 页,2007 年 8 月。http://dx.doi.org/10.3139/146.101529 3. N. Lu、X. Wang、ZG Suo 和 J. Vlassak *,“拉伸超过 50% 的聚合物基底上的金属膜,”Applied Physics Letters,第 91(22) 卷,第 221909 页,2007 年 11 月。http://dx.doi.org/10.1063/1.2817234
铜金属由于其低电阻率和对电子的高电阻性而高度偏爱微电子的相互作用。[1]微电子设备中最小特征的尺寸计划到2022年达到3 nm限制,[2]设定了越来越严格的需求,以使该技术沉积该设备制造的连续低电阻式CUFILMS。原子层沉积(ALD)是一种基于相互脉冲前体的领先的气相薄膜技术 - 是微电子行业的理想选择,因为它固有地提供了高度的相结合薄膜,而不是复杂的几何形状和高光谱比率结构,并且可以使用高含量比率结构,并且可以覆盖厚度较高。[3] Challenge是为了找到行业,有效和可靠的ALD