背景:目前,没有任何商用现货 (COTS) 电感材料或空心电感能够令人满意地满足未来海军电力和能源系统在功率处理、效率、体积效率和热升方面的需求。这一无可否认的结论不仅需要新材料,还需要一种新的超高频材料设计范例,以捕获 250 MHz 或更高的带宽。需要专注于开发用于电感的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感。此外,截止频率和磁导率/磁化(电感饱和电流)具有反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以更低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,具有更高磁导率的样品
钢是一种全球使用的结构材料,也是推进社会和经济体的主要因素。高级高强度钢(AHSS)是一类高性能钢,这对于汽车行业尤为重要,因为燃料效率的需求不断提高,降低排放和被动安全性。研究主题“高级高强度钢的新发展和挑战”旨在收集有关AHSS设计,处理和表征的最先进的研究。本期包括七个经过同行评审的研究文章,涵盖了多种钢类类型,例如中型锰(MN)钢,孪生诱导的可塑性(TIP)钢,变换诱导的可塑性(Trip)钢,淬火和分配的(Q&P)(Q&P)钢(Q&P)钢,低碳铁矿钢和压榨钢。在这些研究中,对热处理途径对AHS的微观结构和机械性能的影响进行了广泛研究,并提出了一些新的加工途径。pan和他通过多种热处理(包括中批评退火(IA),淬火和分区(Q&P)以及IA和Q&P的组合,他通过多种热处理获得了铁氧体,奥氏体和/或马氏体的三种微观结合组合。在这些微观结构之间比较了体积分数的变化和保留奥氏体的稳定性的变化。通过调整加工途径来获得高强度和高伸长率的不同组合,说明了如何调整培养基钢的拉伸性能,以促进其适用于广泛的汽车需求。Glover等。 Park等。Glover等。Park等。Park等。提出的新型加工途径以改善中型MN钢的机械性能。与单个中批评性退火处理相比,证明在中型MN钢两倍浸泡中添加回火或适应性热处理。这项工作重点介绍了修改中MN钢的机械性能的其他机会。众所周知,谷物的修复可以提高钢的强度。严重的塑性变形(SPD)过程通常用于创建平均晶粒尺寸小于1μm的UFG微结构。但是,在扩大大规模钢生产的SPD方法方面存在很大的困难。进行了一种新型的循环热处理,以在2 MN-0.1 C钢中产生UFG铁氧体。事实证明,环状热处理可有效降低奥斯丁岩晶粒尺寸至11μm。平均晶粒尺寸为4.5μm,几乎随机纹理的菌丝铁矿结构仅通过循环热处理成功获得,并提供了高强度和较大的拉伸延展性。
作为一种信息存储介质,磁带不像胶片或纸张那样稳定。如果保养得当,胶片和非酸性纸张可以使用数百年,而磁带只能使用几十年。由于多种格式(例如,U-matic、VHS、S-VHS、8mm 和用于视频的 BetaCam)、介质类型(氧化铁、二氧化铬、钡铁氧体、金属颗粒和金属蒸发)的盛行以及介质技术的快速发展,磁性介质的存储用途更加复杂。另一方面,书籍几个世纪以来几乎一直保持着相同的格式,几乎只使用纸上的墨水作为信息存储介质,并且不需要特殊技术来访问记录的信息。同样,较新的微缩胶片、微缩胶片和电影胶片在适当的环境中保存时也以其稳定性而闻名,多年来观看格式没有发生很大变化。 (困扰旧薄膜材料的醋酸纤维背衬的损坏在第 2.3 节:基材变形中进行了讨论。)本报告将尽可能将胶带的保养和处理程序与纸张和薄膜的程序进行比较。
CF/环氧树脂, 155, 174, 198, 240, 255, 330, 369, 481, 490, 552, 661 CFRP, 111, 419 GF/环氧树脂, 255, 330, 356, 473, 601 GF/酚醛树脂, 558 玻璃球/环氧树脂, 311 铁氧体/树脂, 347 凯芙拉纤维/环氧树脂, 347 铅球/环氧树脂, 311 MMC, 210, 507 SiC/Al, 507, 633 SiC/Ti 合金, 596 钢球/PMMA, 311 钢/聚合物水泥混凝土, 92 钽/SiC, 29 钨/羰基镍, 620不锈钢/钨钢,620 复合板,282 复合截面模量,565 压缩试验,680 压缩应力,678,684 置信限度,93,102 腐蚀,636 裂纹密度,46,602 正面,524,528 H 形,144,150 扩展,150,524,526 运行,526 交叉层,111,355,552 Cunningham,Mary E.,253-262 固化周期,490 曲面表面,264,275 截止频率,312,324
量子比特和腔之间的色散相互作用在电路和腔量子电动力学中无处不在。它描述了一个量子模式响应另一个量子模式的激发而发生的频率偏移,并且在封闭系统中必然是双向的,即互易的。在这里,我们展示了一项关于 transmon 量子比特和超导腔之间非互易色散型相互作用的实验研究,这种相互作用源于与具有破坏时间反转对称性的耗散中间模式的共同耦合。我们通过原位调整铁氧体元件的磁场偏置来表征不同程度的非互易性下的量子比特腔动力学,包括不对称频率牵引和光子散粒噪声失相。我们引入了一个用于色散状态下非互易相互作用的通用主方程模型,为与中间系统无关的观察到的量子比特腔动力学提供了紧凑的描述。我们的结果提供了一个超越非厄米汉密尔顿量和级联系统典型范式的量子非互易现象的例子。
摘要:使用水电解的绿色氢的生产被广泛认为是最有前途的技术之一。另一方面,氧气进化反应(OER)在热力学上是不利的,需要显着的超电势才能以足够的速度进行。在这里,我们概述了重要的结构和化学因子,这些因素和化学因子影响了代表性的镍铁氧体改性石墨烯氧化石墨烯电催化剂在有效的水分分裂应用中执行。修饰原始和氧化石墨烯的镍铁素体的活性是根据其结构,形态和电化学性质彻底表征的。这项研究表明,Nife 2 O 4 @Go电极对尿素氧化反应(UOR)和水分分割应用都有影响。Nife 2 O 4 @Go被观察到,当电流密度为26.6 mA -CM -2在1.0 m尿素中,1.0 m KOH,扫描速率为20 mV s -1。为UOR提供的TAFEL斜率为39 mV dec -1,而GC/Nife 2 O 4 @Go电极到达10 mA CM -2 -2
和葡萄球菌,Satish Bykkam、Venkateswara Rao K、Shilpa Chakra CH. Tejaswi Thunugunta,国际先进生物技术和研究杂志,ISSN 0976-2612,在线 ISSN 2278–599X,第 4 卷,第 1 期,第 1005-1009 页,2013 年。100) 通过机械化学合成合成和表征 MgFe2O4(0.5)/TiO2(0.5) 纳米陶瓷颜料,T.Dayakar、K.Venkateswara Rao、Ch.Shilpa Chakra,国际纳米科学与技术杂志,第 4 卷。 1,No. 1,,PP:01- 08,ISSN:2328-5443,2013年2月。101) Co 掺杂对新型燃烧合成法合成的 ZnO 纳米粒子结构和磁性的影响,V. Rajendar、K. Venkateswara Rao、K. Shobhan、CH Shilpa Chakra,JOURNAL OF NANO- AND ELECTRONIC PHYSICS,Vol. 5 No 1,01022(3页),2012 年。102) 溶液燃烧合成法合成纳米晶体铋铁氧体,V. Sesha Sai Kumar、K. Venkateswara Rao、Ch. Shilpa Chakra、A. Shiva Kishore Goud、T.Krishnaveni,《纳米科学、纳米工程与应用杂志》,第 1 卷,第 2 期,第 52-58 页,2011 年 9 月。 书籍章节:
警告 本设备已经过测试,符合 FCC 规则第 15 部分对 B 类数字设备的限制。这些限制旨在为住宅安装提供合理的保护,防止有害干扰。本设备会产生、使用并辐射射频能量,如果不按照说明进行安装和使用,可能会对无线电通信造成有害干扰。但是,不能保证在特定安装中不会发生干扰。如果本设备确实对无线电或电视接收造成有害干扰(可通过关闭和打开设备来确定),则鼓励用户尝试通过以下一种或多种措施来纠正干扰: — 重新调整或重新定位接收天线。— 增加设备和接收器之间的距离。— 将设备连接到与接收器所连接电路不同的电路插座上。— 请咨询经销商或经验丰富的无线电/电视技术人员寻求帮助。请注意,本手册中未明确批准的任何更改或修改都可能导致用户操作设备的权限失效。授权说明:为符合 FCC 规则第 15 部分,本产品必须与富士指定的铁氧体磁芯 A/V 电缆、USB 电缆和直流电源线一起使用。
晶格、自旋和轨道自由度之间的相互作用。[1] 这些晶体可以容纳各种决定其性质的阳离子物种,从而产生不同的电子、磁性和光学行为。[2] 例如,它们的催化活性和性能可受到 A 位和/或 B 位阳离子取代或部分取代的显著影响。[3–6] 在众多用于催化应用的钙钛矿中,Sr 掺杂的镧铁氧体 (La 1 −xSr x FeO 3 ; LSFO) 在光催化水分解方面引起了特别的关注,[7–10] 其中 Fe 作为 B 位过渡金属阳离子驱动选择性氧化。 La 3 +阳离子被氧化态较低的阳离子(即Sr 2 +)取代,导致B阳离子部分氧化为氧化态较高和/或形成氧空位,从而产生更佳的催化活性。[10] 钙钛矿能够容纳多种取代基和掺杂剂,这为其组成和相关氧化态提供了很大的灵活性。这种可调性反过来又使得可以根据各种应用调整钙钛矿的物理化学性质,例如固体氧化物燃料电池(SOFC)中的阴极材料、非均相催化中的催化剂和氧载体、氧分离膜和固态气体传感器。[11]
警告 本设备已经过测试,符合 FCC 规则第 15 部分中 B 类数字设备的限制。这些限制旨在为住宅安装提供合理的保护,防止有害干扰。本设备会产生、使用并辐射射频能量,如果不按照说明进行安装和使用,可能会对无线电通信造成有害干扰。但是,并不能保证在特定安装中不会发生干扰。如果本设备确实对无线电或电视接收造成有害干扰(可通过关闭和打开设备来确定),建议用户尝试通过以下一种或多种措施来纠正干扰: — 重新调整或重新放置接收天线。 — 增加设备和接收器之间的距离。 — 将设备连接到与接收器连接的电路不同的电路插座上。 — 咨询经销商或经验丰富的无线电/电视技术人员寻求帮助。请注意,任何未经本手册明确批准的更改或修改都可能导致用户操作设备的权限失效。资助说明:为符合 FCC 规则第 15 部分,本产品必须与富士指定的铁氧体磁芯 A/V 电缆、USB 电缆和 DC 电源线一起使用。