美国国家标准与技术研究所 (NIST) 的信息技术实验室 (ITL) 通过为国家测量和标准基础设施提供技术领导来促进美国经济和公共福利。ITL 开发测试、测试方法、参考数据、概念验证实施和技术分析,以促进信息技术的开发和生产使用。ITL 的职责包括制定管理、行政、技术和物理标准和指南,以确保联邦信息系统中除国家安全相关信息之外的其他信息具有成本效益的安全性和隐私性。特别出版物 800 系列报告了 ITL 在信息系统安全方面的研究、指南和推广工作,以及它与行业、政府和学术组织的合作活动。
摘要。应该可以使用量子计算机,它们将减少基本秘密基原始人(例如块状键)的有效关键长度。为了解决这个问题,我们要么需要使用具有固有键的块检查器,要么开发钥匙长度扩展技术来放大块状的安全性以使用更长的键。我们考虑后一种方法,并重新审视FX和双重加密结构。从经典上讲,FX被证明是一种安全的钥匙长度扩展技术,而双重加密由于中间攻击而无法比单个加密更安全。在这项工作中,我们提供了积极的结果,并具有具体和紧密的界限,以确保这两种结构在理想模型中针对量子攻击者的安全性。对于FX,我们考虑了一个部分Quantum模型,其中攻击者可以量子访问理想原始的,但仅访问FX的经典访问。这是一种自然模型,也是最强大的模型,因为当授予两个orac时量子访问时,对FX的有效量子攻击就存在于全量器模型中。我们在此模型中为FX提供了两个结果。第一个建立了FX对非自适应攻击者的安全性。第二个使用随机的Oracle代替理想的密码来针对FX的一般自适应攻击者建立安全性。此结果依赖于Zhandry(Crypto '19)的技术来懒惰地采样量子随机甲骨文。完全懒惰地采样量子随机排列的扩展,这将有助于解决标准FX的适应性安全性,这是一个重要但充满挑战的开放问题。我们介绍了部分量词证明的技术,而无需分别分析经典和量子甲骨文,这在现有工作中很常见。这可能具有更广泛的兴趣。对于双重加密,我们表明它在全量器模型中扩增了强大的伪随机置换安全性,从而增强了较弱的键恢复安全性的已知结果。这是通过调整Tessaro和Thiruvengadam(TCC '18)的技术来完成的,以将安全性降低到解决列表脱节问题的困难中,然后通过将其减少到已知的量子限制的链接来显示其硬度。
TIPS-VF:具有序列,长度和位置意识的可变长度DNA片段的增强向量表示Marvin I.de los santos logia.co,马尼拉大都会,菲律宾Midelossantos1215@gmail.com摘要,在机器学习过程中准确编码和表示遗传序列的能力对于生物技术的进步至关重要,这对于生物技术的进步至关重要,特别是基因工程和合成生物学。传统的序列编码方法在处理序列变异性,保持阅读框架完整性并保留生物学相关的特征中面临着显着的限制。这项初步研究介绍了TIPS-VF(可变长度片段的翻译器互动预种植者),这是一个简单有效的编码框架,旨在解决代表机器学习遗传序列的一些关键挑战。结果表明,TIPS-VF启用了可变的长度序列表示,该表示可以保留生物学环境,同时确保编码与密码子边界的对齐,从而特别适合模块化遗传结构。TIPS-VF在截断和碎片分析,序列同源性检测,域评估和剪接连接识别方面表现出卓越的性能。与需要固定长度输入的常规方法不同,TIPS-VF动态适应序列长度变化,保留基本特征,例如域相似性和序列基序。此外,TIPS-VF通过将序列嵌入与三个可能的开放式阅读框架统一,改善了开放的阅读框架识别并增强了向量零件和质粒元素的识别。总的来说,TIPS-VF提供了一个强大的,生物学上有意义的编码框架,通过结合序列,长度和位置意识来克服传统序列表示的约束。TIPS-VF编码基础架构可在https://tips.logiacommunications.com上找到。利益冲突:作者宣布没有利益冲突资金资金信息:无
收到2024年2月2日; 2024年5月7日接受;于2024年6月7日发布:1 Doherty应用微生物基因组学,微生物学和免疫学系,墨尔本大学Peter Doherty感染与免疫学研究所,792 Elizabeth Street,Melbourne VIC 3000,澳大利亚澳大利亚墨尔本街792号; 2爱尔兰科克摩尔帕克的Teagasc食品研究中心; 3爱尔兰科克大学科克大学科克大学科克大学的APC微生物组和微生物学院; 4 Vistamilk SFI研究中心,爱尔兰科克Teagasc Moorepark。*信件:John G. Kenny,John。Kenny@teagasc。IE关键字:Amplicons;数据库;长阅读测序;微生物组;纳米孔; rRNA。缩写:COV,变异系数; ESV,精确的序列变体; Grond,基因组衍生的核糖体操纵子数据库; GTDB,基因组分类数据库; IQR,四分位数范围;它的内部转录垫片; NR,非冗余; ONT,牛津纳米孔技术; RRN,16S-ITS-23S rRNA操纵子; rRNA,核糖体RNA; SD,标准偏差; Taxlca,集群中所有序列的最低祖先; Taxmaj,最低的分类学等级,其中所有序列中的所有序列都具有简单的多数协议; Taxrep,集群代表序列的源基因组分类学; UMIS,唯一的分子标识符。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用两个补充表。001255©2024作者
摘要 —脑机接口利用脑信号来控制外部设备,而无需实际控制行为。最近,语音意象已被研究用于使用语言进行直接交流。语音意象使用用户想象语音时产生的脑信号。与运动意象不同,语音意象仍然具有未知的特征。此外,脑电图具有复杂和非平稳特性,导致解码性能不足。此外,语音意象难以利用空间特征。在本研究中,我们设计了长度训练,使模型能够对一系列少量单词进行分类。此外,我们提出了分层卷积神经网络结构和损失函数以最大化训练策略。所提出的方法在语音意象分类中表现出竞争力。因此,我们证明了单词的长度是提高分类性能的线索。关键词-脑机接口;脑电图;语音意象;卷积神经网络
图 1 . (a) 以 PS- b -PEO 为模板的介孔 ZIF-8 (M- ZIF-8) 合成过程示意图。(b、c) M-ZIF-8 的 SEM 图像。(b) 中的插图显示了基于图 S1a 的粒径统计分布。(d) TEM 图像、(e) SAED 图像、(f) 暗场 TEM 图像和 EDS 映射、(g) XRD 图案、(h) SAXS 图案和 (i) M-ZIF-8 的 N 2 吸附-解吸等温线。(i) 中的插图显示孔径分布。以 (j) PS 3800 - b -PEO 5000 和 (l) PS 9500 - b -PEO 5000 为模板的 M-ZIF-8 的 SEM 图像。由 (k) PS 3800 - b -PEO 5000 和 (m) PS 9500 - b -PEO 5000 模板化的 M-ZIF-8 的 TEM 图像。比例尺:200 nm (b、c、d、f、jm);2 nm -1 (e)。
2019-01 2019.02.22 在推荐的操作模式中添加了 CCM 模式。在旧机制中添加了 PKCS1.5 填充。 2020-01 2020.03.24 建议将 FrodoKEM 和 Classic McEliece 与之前推荐的非对称机制结合使用,并采用适当的安全参数用于 PQC 应用。建议使用 Argon2id 进行基于密码的密钥派生。将密钥长度为 2000 位或更长的 RSA 密钥的一致性过渡延长至 2023 年底。 2021-01 2021.03.08 修订随机生成器章节,特别是关于使用 DRG.3 和 NTG.1 随机生成器。不再建议将 PTG.2 随机生成器用于一般用途。添加基于哈希的签名程序的标准化版本。 2022-01 2022 年 1 月 28 日对全文进行根本性编辑修订,对版面进行细微调整。更新了侧信道分析、QKD 和随机数生成器的种子生成方面的内容。 2023-01 2023 年 1 月 9 日将安全级别提高到 120 位,更新了 PQC 方面的内容。 2024-01 2024 年 2 月 2 日在量子安全密码学背景下进行根本性重组,自 2029 年起停止使用 DSA 建议,纳入 MLS 协议。
这是预先发布的版本。本文档是公认的手稿版本的已发表作品,该作品以ACS Nano的最终形式出现,版权所有©2020 American Chemical Society在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acsnano.9b08928。