摘要:一种代谢性疾病糖尿病,使身体失去对血糖调节的控制。随着自我监控系统的最新进展,患者可以访问其个性化的血糖预科,并可以利用它来对未来血糖水平的有效预测。有效的糖尿病管理系统要求对血糖水平进行准确的估计,除了使用适当的预测算法之外,该系统还取决于歧视性数据表示。在这项研究工作中,提出了将基于事件的数据转换为判别连续特征。此外,开发了多层长期短期记忆(LSTM)的复发性神经网络,用于预测1型糖尿病患者的血糖水平。该提出的方法用于预测30和60分钟的预测范围。使用俄亥俄T1DM数据集评估了三名患者的结果。所提出的方案的预测范围分别为30分钟和60分钟的最低RMSE评分为14.76 mg/dl和25.48 mg/dl。建议的方法可以在闭环系统中使用,以精确的胰岛素递送至1型患者,以获得更好的血糖控制。
摘要 我们介绍了 MetaArms,这是一种可穿戴的拟人机械臂和机械手,具有六个自由度,由用户的腿和脚操作。我们的总体研究目标是使用身体重塑方法重新想象我们的身体在可穿戴机器人的帮助下可以做什么。为此,我们提出了一个初步的探索性案例研究。MetaArms 的两个机械臂由用户的脚部运动控制,机械手可以根据用户的脚趾弯曲来抓取物体。用户的脚上还会呈现触觉反馈,与机械手上触摸的物体相关,从而创建一个闭环系统。我们对该系统进行了正式和非正式的评估,前者根据菲茨定律使用 2D 指向任务。据报道,该系统 12 个用户的总吞吐量为 1.01 比特/秒(标准差 0.39)。我们还提供了来自 230 多名用户的非正式反馈。我们发现 MetaArms 证明了身体重塑方法在机器人肢体设计中的可行性,这可能有助于我们重新想象人体可以做什么。
摘要 —本文采用带单位反馈的闭环系统中的 PID 控制器来控制机器人机械手。控制器的使用难点在于参数调整,因为调整参数仍然使用试错法来找到 PID 参数常数,即比例增益 (K p )、积分增益 (K i ) 和微分增益 (K d )。在这种情况下,蚁群优化算法 (ACO) 用于寻找 PID 的最佳增益参数。蚂蚁算法是一种组合优化方法,它利用蚂蚁从巢穴到食物所在位置寻找最短路径的模式,该概念应用于通过最小化目标函数来调整 PID 参数,从而使机器人机械手具有改进的性能特征。本研究采用 Matlab Simulink 环境,首先建立系统模型,然后利用蚁群算法确定适当的系数 𝐾 p 、 𝐾 i 和 K d ,以使机器人机械手两个关节的轨迹误差最小化。然后,将这些参数应用于机器人系统。根据计算机仿真结果,与经典 PID 相比,所提出的方法 (ACO-PID) 给出了一个具有良好性能的系统。
Aqua Metals Reno,Inc。(Aqua Metals Reno)寻求扩大其在Tahoe Reno工业中心(TRIC)中的现有业务,以适应其能力的扩展,以包括其Li Aquarefining Process。Aquarefining是一种低排放的闭环回收技术,用电供电的电镀代替污染的炉子和有害化学物质,以从具有较高纯度,较低发射和最小废物的耗尽电池中回收有价值的金属和材料。“ Aqualyzers”一次清洁产生超色的金属原子原子,从而关闭可持续性循环,以供快速增长的储能经济体。Aqua Metals Reno扩大了设施计划在未来几年通过分阶段的开发策略在未来几年中达到每年10,000吨的容量(每年100,000电动电池)。此外,Aqua Metals Reno的工艺是最小的废物,并使用了回收化学物质和水的闭环系统。Aqua Metals与当地劳动力开发组织Elapernv&Nevadaworks合作。此外,Aqua Metals与Truckee Meadows社区学院(TMCC)职业技术教育计划和内华达州西部社区(WNC)学院的教育机构合作。来源:Aqua Metals Reno,Inc。
摘要 本文主要研究涵道风扇垂直起降 (VTOL) 无人机 (UAV) 的过渡控制。为了实现从悬停到高速飞行的稳定过渡,提出了一种基于神经网络的控制器来学习系统动态并补偿飞机动态和所需动态性能之间的跟踪误差。首先,我们推导了飞机全包络动力学的非线性系统模型。然后,我们提出了一种基于神经网络的新型控制方案并将其应用于欠驱动飞机系统。所提出的控制器的主要特征包括投影算子、状态预测器和动态形成的自适应输入。证明并保证在整个神经网络学习过程中,状态预测器和神经网络权重的跟踪误差都有上限。高度自适应的输入形成动态结构,有助于实现所提出的控制器可靠的快速收敛性能,尤其是在高频扰动条件下。从而使飞行器的闭环系统能够以期望的动态性能跟踪一定的轨迹,仿真和实飞试验均取得了满意的结果,完成了设计的飞行路线。
我们所有产品和服务的发明和设计都高度重视其可持续性价值;在航天工业中,可持续性不仅关乎拥有更美好的未来:它关乎拥有未来。虽然轨道空间广阔,但它仍然是一种有限的资源,需要根据可持续性原则进行管理,以保护其未来。我们最先进的服务将这一考虑向前迈进了一步,思考如何最好地促进和加速太空循环经济,即通过减少浪费、再利用资源和回收材料来实现太空的可持续经济。这涉及设计太空任务、航天器和太空栖息地,目标是实现一个闭环系统,将废品重新利用或回收以制造新产品。这可以帮助应对太空可持续资源利用的挑战;随着人类在太空活动的扩大,产生的废物和消耗的资源量也将增加,这可能导致环境恶化和有限资源的枯竭。通过在太空中采用循环经济原则,我们可以创建一个可持续的系统,以支持人类的长期居住和探索。
摘要 近场电感耦合无线电力传输 (WPT) 系统已广泛应用于脑植入应用。然而,由于发射器 (TX) 和接收器 (RX) 线圈之间的不同变化会导致接收功率变化,因此高效可靠的电力传输具有挑战性。本文提出了一种利用负载移位键控的闭环自适应控制系统,该系统采用 0.5 lm 标准 CMOS 工艺设计,用于为植入负载提供所需的功率,以补偿这些差异。所提出的 TX 和 RX 线圈均采用 FR4 基板制造,尺寸分别为 10 9 10 mm 和 5 9 5 mm。通过改变功率放大器的电源电压,该自适应闭环系统调节发射功率,向负载提供 5.83 mW 的功率,这大约是阈值窗口的中点。该系统在空气和组织介质中分别实现了 8 毫米距离下的 9% 和 8% 的电力传输效率。初步结果表明,与开环模块相比,带有反馈回路的微型 WPT 模块在 TX 和 RX 线圈之间的 8 毫米距离下实现了 8% 和 3% 的效率提升。
摘要 长期太空任务会产生大量废物,因此很难通过回收、废弃或再利用来管理废物。载人火星之旅以及地月自由点任务都曾研究过通过气闸舱将固体废物简单地送入太空的想法。人类旨在在火星上建立一个繁荣而持久的殖民地,需要解决的主要障碍包括为定居者提供稳定而有益的食物、燃料、药物和 3D 打印原料。尽管有很多关于在火星上生产必需品的建议,但使用微生物作为主要生产单位正越来越受欢迎。鉴于长期太空任务,本综述研究着眼于可持续性、卫生和回收等关键领域。为了使太空探索项目保持可行性并保证宇航员的安全,必须解决这些问题。我们研究的技术包括闭环系统、复杂的生命支持技术、资源效率和有效的回收利用。已经确定,长期规划、全球合作和行为改变对于太空探索实现其可持续性目标是必要的。太空组织可以通过结合这些技术来创建能够支持更长时间任务的自给自足的栖息地和航天器,同时减少对环境的影响。关键词:废物模型、水废物管理、太空回收
摘要。在人们日益担心资源枯竭和环境破坏的时代,闭环供应链 (CLSC) 的概念已获得认可,被视为一种可行且可持续的解决方案。本研究通过分析闭环供应链中的回收和再制造程序,考察了环境保护与经济发展之间的相互依存关系。本文利用广泛的案例研究来调查闭环供应链在材料和部件回收和再制造过程中的关键意义。通过全面研究环境效益和经济效益之间的复杂关系,本研究揭示了在当代供应链管理中实施闭环系统所产生的各种微妙影响。该研究采用混合方法,结合定量和定性研究。该研究使用定量数据来衡量回收和再制造过程对减少原材料使用、能源消耗和温室气体排放的贡献程度。该研究强调了闭环供应链在促进循环经济理念、减少废物排放和减轻公司对环境影响方面的能力。这项研究提供了宝贵的见解,从业者、政客和公司可以利用这些见解做出明智的决策,在供应链战略中优先考虑环境保护和经济增长。
摘要:新兴技术和控制系统彻底改变了医疗服务,这在糖尿病的自我管理中非常明显,通过整合连续的葡萄糖监测器(CGM),胰岛素泵和混合闭环系统,从而显着改善了血糖控制并降低低血糖风险。在糖尿病管理中,人工智能(AI)技术用于三种主要应用,这些应用是闭环控制算法,通过连续葡萄糖监测(CGM)生物传感器和AI算法的葡萄糖预测,以及在AI算法的帮助下校准CGM生物传感器。将AI技术集成到糖尿病护理中可以支持更好的临床结果,从而减少了与糖尿病管理相关的行政负担和成本。连续的葡萄糖监测(CGM)系统对于立即葡萄糖数据传递起着至关重要的作用,它通过降低HBA1C水平并增强自我保健技能,显示出在改善糖尿病管理方面的有效性。这已经培养了患者在管理医疗状况方面的信心增强。但是,这些技术的成功采用需要医疗保健专业人员和家人的大力支持,以确保依从性和有效使用,尤其是考虑