第二次谐波生成(SHG)是一个非线性光学过程,其中两个光子连贯地组合成两个光子的能量的两倍。的效果SHG。在这里,我们显示了反转对称晶体中非线性光学过程的调整。这种可调节性基于双层MOS 2的独特性能,该特性显示出强烈的光学振荡器强度,但也显示了层间激子的共振。当我们通过改变激光能将SHG信号调谐到这些共振上时,SHG振幅通过几个数量级增强。在谐振情况下,双层SHG信号达到的幅度与单层的两个共振信号相当。在施加的电场中,可以通过鲜明的效应来调节层间激子能量。因此,取消了层间激子退化性,并通过我们的模型计算得出的良好再现了两个数量级,进一步增强了双层SHG响应。
Abstract The assembly of monolayer transition metal dichalcogenides (TMDs) in van der Waals heterostructures yields the formation of spatially separated interlayer excitons (IXs) with large binding energies, long lifetimes, permanent dipole moments and valley-contrasting physics, providing a compelling platform for investigating and engineering spatiotemporal IX propagation with highly tunable动力学。进一步扭曲堆叠的TMD单层可以创建具有空间修改的带结构和不同的Moiré电位的长期周期性Moiré模式,具有定制的陷阱,这些陷阱可以引起与密度依赖性相变的强相关性,以调节激子运输。TMD异质结构中丰富的激子景观,加上Valleytronics和Twistronics的进步,对探索激子综合电路的巨大希望基于操纵激烈的扩散和运输。在这篇综述中,我们全面概述了了解IXS和Moiré激子的最新进展,特别关注了TMD异质结构中新兴的激子扩散和运输。我们强调通过各种方法对激子通量进行空间操纵,包括激子密度,介电环境,电场和结构工程,以进行精确控制。这种操纵激子扩散的能力为相互交流和信号处理提供了新的可能性,为在高性能光电上的激发应用铺平了道路,例如激发设备,valleytronic晶体管和光电探测器。我们终于通过概述了利用IX电流的观点和挑战来结束这项审查,用于下一代光电应用。
基于AFNIA(HfO 2 )的硅通道铁电场效应晶体管(HfO 2 Si-FeFET)在非挥发性存储器领域得到了广泛的研究[1-7],这得益于掺杂HfO 2 中铁电性的发现[8]。文献报道中HfO 2 Si-FeFET的存储窗口(MW)大多在1-2 V左右[9-12],不能满足其在多位存储单元应用的要求。为了提高MW,当前的措施主要通过降低掺杂HfO 2 铁电体与Si通道之间底部SiO x 夹层的电场,从而抑制掺杂HfO 2 /SiO x 界面处的电荷捕获[13-16],同时增加SiO x 的数量。最近,有报道称MIFIS结构可以有效提高MW,并使用SiO 2 作为顶部夹层[17-21]。然而,Al 2 O 3 作为顶层尚未见报道。因此,我们报道 Al 2 O 3 层作为顶层中间层,以及 MW 对 Al 2 O 3 厚度的依赖性。
堆叠自由度是调整材料特性的关键因素,并且已在分层材料中进行了广泛的研究。最近发现Kagome超导体CSV 3 SB 5在T CDW〜94 K下方显示出三维CDW相位。尽管对内平面调制进行了彻底的研究,但平面外调制仍然模棱两可。在这里,我们的极化和温度依赖性拉曼测量结果揭示了C 6旋转对称性的破坏,并且在大约120°的三个不同域的存在下,彼此之间存在三个不同的域。观察结果表明,CDW相可以自然解释为2C交错阶相,相邻层显示相对π相移。此外,我们在大约65 K处发现了一阶结构相变,这是由于堆叠断层而引起的堆叠顺序diSorder相变,并受到CS相关唱片模式的热磁滞行为的支持。我们的发现突出了CSV 3 SB 5中堆叠自由度的重要性,并提供了结构见解,以理解超导性和CDW之间的纠缠。
开放式船舶交通的解化绝绝对只能通过替代能源载体实现。除了合成燃料之外,电池电力推进是一种备受关注的措施,尤其是对于较小的船只和短通道。但是,对定量船舶特性尚无共识,可以应用电池而不是基于燃料的解决方案。因此,评估了45个具有一系列运输能力的容器的电池推进系统的局限性。最常见的海洋电池技术通过将其性能与最先进的燃烧引擎进行比较,从经济和环境中评估。监控船舶的质量和数量限制,除了资本和运营费用外,还量化了新兴的机会成本。发现电池电气推进系统的应用不受容器尺寸的限制,而是主要受操作的通道长度的限制。尽管在技术上最多可实现15,000公里的距离,但经济上的局限性实际上将应用领域降低到最多10,000公里。但是,当将电池解决方案与常规柴油燃烧发动机进行比较时,只有在包括碳税和预测乐观的电池开发时,才能观察到高达2500公里的经济竞争力。
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
室温钠硫 (RT Na-S) 电池具有高理论能量密度和低成本的特点,最近因潜在的大规模储能应用而受到广泛关注。然而,多硫化钠的穿梭效应仍然是导致循环稳定性差的主要挑战,这阻碍了 RT Na-S 电池的实际应用。在此,设计了一种多功能混合 MXene 中间层以稳定 RT Na-S 电池的循环性能。混合 MXene 中间层包括大尺寸的 Ti 3 C 2 T x 纳米片内层,随后是玻璃纤维 (GF) 隔膜表面的小尺寸 Mo 2 Ti 2 C 3 T x 纳米片外层。大尺寸的 Ti 3 C 2 T x 纳米片内层为可溶性多硫化物提供了有效的物理阻挡和化学限制。小尺寸的 Mo 2 Ti 2 C 3 T x 外层具有出色的多硫化物捕获能力,并加速了多硫化物转化的反应动力学,这是由于其优异的电子电导率、大的比表面积和富含 Mo 的催化表面。因此,采用这种混合 MXene 夹层改性玻璃纤维隔膜的 RT Na-S 电池在 1 C 下在 200 次循环中提供稳定的循环性能,容量保持率提高了 71%。这种独特的结构设计为开发高性能金属硫电池的基于 2D 材料的功能夹层提供了一种新颖的策略。
摘要 — 电源模块中的直接键合铜 (DBC) 等基板需要承受足够高的绝缘电压,以提供半导体芯片和冷却系统之间的隔离。当电场超过绝缘材料的临界介电强度时,就会发生局部放电 (PD),并且它通常是电源模块中的关键退化指标。确保在中高压电源模块封装中没有基板 PD 更具挑战性。与简单地增加单个基板绝缘层的厚度相比,堆叠多个基板似乎是实现高绝缘电压的一种有前途的解决方案。本文研究了堆叠基板的 PD 性能,并提出了在堆叠基板中采用图案化中间层以进一步提高绝缘电压。优化了堆叠基板的金属化之间的偏移量,以实现电场和热阻之间的权衡。基于中间层图案化堆叠基板设计开发了10 kV SiC 功率模块,并通过高达 12.8 kVrms 的 PD 测试验证,与传统堆叠基板相比,最大电场降低了 33%。
摘要 - 单层三维集成电路(M3D-IC)中的(MIV)的金属间层中的Miv(MIV)用于连接层间设备,并在多层跨多层提供功率和时钟信号。MIV的大小与逻辑门相当,因为由于顺序集成,底物层的显着降低。尽管MIV的尺寸很小,但MIV对相邻设备性能的影响应考虑在M3D-IC技术中实现IC设计。在这项工作中,我们会系统地研究晶体管在MIV附近放置的晶体管性能变化,以了解MIV通过底物时MIV对相邻设备的影响。仿真结果表明,应考虑使用MIV的保留区(KOZ)以确保M3D-IC技术的可靠性,并且该KOZ高度依赖于M3D-IC过程。在本文中,我们表明,考虑到M1金属螺距的MIV附近的晶体管,因为分离将具有高达68、668×增加泄漏电流,当通道掺杂为10 15 cm - 3,源/排水掺杂,10 18 cm -3