为了打击全球变暖并实现循环经济,碳捕获和利用率(CCU)在过去几十年中已开发出41种技术,以将CO 2回收到有用的资源中。在这42种技术中,与可再生能源相结合的微生物电气合成(MES)已在近43个几年中作为一个可持续的平台,用于从Co 2 44中产生甲烷气或其他生物化学物质的可持续平台(Bian等,2020b,2020b; Fu et al。,2018; liu et al al al al al al al an a al al an al an al al et al al an allie et al an; fu et et al。自MES的首次概念验证(Nevin等,45,2010年),自我生成的化学杂质促营养物,作为MES阴极表面上的生物催化剂或46个悬架中的生物催化剂,已依靠介导或直接电子转移(DET)进行47 CO 2的固定(bian et al.2021; viveeauy;然而,通过C型细胞色素,H +依赖性的RNF复合物,氢化酶,或49种生物纳米线菌(Logan等人,2019; Prevoteau et et prevoteau et et and the Fresparane),只有几毫克的bark虫,通过C型细胞色素直接通过48种化学载体促营养的人吸收。对于从51个纯或混合文化驱动的MES中的DET的能力(Tremblay等,2017; Yee等,2019)。52氢(h 2)气体已广泛与MES中介导的电子转移有关(Baek等,53 2022; Bian等,2021),因此对于增强CO 2的生化产生54的能力可能非常重要。55
这项工作是作为由美国政府机构赞助的工作的帐户准备的。Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构,其承包商或分包商的观点和观点。
在这项研究中,使用ANSYS-CFX软件进行离心压缩机的数值模拟。重点在于研究入口尖端清除率(ITC)对内部复合物流量和离心压缩机的空气动力学性能的影响。具体而言,本文主要强调了ITC对离心压缩机的多层次效率和总压力比,以及叶片尖端的速度和压力的变化,叶片尖端的时空演化(尖端裂缝涡旋(TLLV)(TLV)(TLV)以及沿压力和veLocity的波动。分析额定工作条件下的尖端裂变流量(TLF)和TLV运动模式,揭示了一场革命内的时空演化。快速傅立叶变换(FFT)频谱分析结果表明,TLV运动模式可能受到ITC大小的影响。叶片尖端区域中的流体流动阻力和回流逐渐降低,有效增强流场稳定性,并消除了旋转出口处的回流涡流,从而通过减小ITC有效扩展了离心压缩机的工作范围。通过降低ITC,离心压缩机的空气动力学性能在培养基和高流速范围内有效增加。此外,观察到刀片尖端区域中的压力,速度和负载与ITC没有线性关系,从而导致有关ITC的空气动力学性能的非线性变化。压力和速度光谱分析表明,与中间相比,TLF的效果在流通过的顶部更强。此外,随着ITC的增加,TLF的效果在压力侧的中间和顶部(PS)下降,同时在PS的底部和吸力侧(SS)增加。
糖尿病是全球最常见的代谢疾病之一,导致并发症,死亡率和显着的医疗保健支出,在全球范围内造成了实质性的社会和财务负担。糖尿病环境会引起代谢变化,对肌腱稳态产生负面影响,从而导致生物力学特性和组织病理学的改变。众多研究研究了糖尿病对肌腱发挥病理影响的机制,包括增加自由基生产,氧化应激,炎症反应,高级糖基化终产物(AGES)的沉积和微血管变化。这些代谢变化损害肌腱结构,生物力学和肌腱修复过程。肌腱干细胞的增殖降低,凋亡增加和异常分化,以及肌细胞的异常表达,最终导致不足的肌腱修复,纤维化和重塑。尽管研究揭示了糖尿病对肌腱病,纤维化或染色以及肌腱损伤愈合的影响,但仍缺乏系统的理解。因此,本综述总结了当前的研究状态,并提供了全面的概述,为未来的糖尿病对肌腱影响的影响和与糖尿病相关肌腱疾病的治疗的发展提供了理论指南。
(欧盟委员会); Bjorn Heidecke(德勤,德国)迈克尔·科贝茨基(Michael Kobetsky) (澳大利亚国立大学,澳大利亚)瓦齐·利戈梅卡(马拉维)路易斯·玛丽亚·门德斯(阿根廷)潘德·奥卡·库苏马瓦德尼(印度尼西亚) Mensah Otoo先生(加纳) TP Australia(TP Australia & Associates LLP,印度); El Hadramy Oubeid(毛里塔尼亚) Raffaele Petruzzi(奥地利维也纳经济大学奥地利和国际税法研究所 WU 转让定价中心);克劳迪娅·佩珀(巴西)戴维·鲁尔(德国) Jolanda Schenk(荷兰壳牌公司)鲁奇卡·夏尔马(印度) Stig Sollund(挪威独立顾问)特鲁德·斯泰因内斯·斯诺(挪威) Jose Troy Gonzalez(CPA-厄瓜多尔罗巴利诺);莫妮克·范·赫克森 (Simmons & Simmons,荷兰)马科斯·瓦拉多 (巴西热图利奥·巴尔加斯基金会);熊燕(中国)。 Carlos Perez-Gomez Serrano(毕马威,墨西哥)和 Anthony Munanda(ATAF)的早期参与也得到了认可。衷心感谢秘书处,特别是 Ilka Ritter 和 Michael Lennard 在这项工作中提供的协助。
*通信地址:美国马萨诸塞州波士顿,美国马萨诸塞州波士顿,杨百翰医学系Ezekiel Caleb;电子邮件:caleb.ezekiel@mcw.edu版权所有:©2024 Caleb E.这是根据Creative Commons Attribution许可条款分发的开放式访问文章,该文章允许在任何媒介中使用任何媒介,前提是原始作者和来源的原始作者和来源。收到:2024年7月1日,手稿号JCH-24-143567;编辑分配:2024年7月3日,PREQC No.p-143567;审查:2024年7月15日,QC号Q-143567;修订:2024年7月22日,手稿号R-143567;发布:2024年7月29日,doi:10.37421/2157-7099.2024.15.755R-143567;发布:2024年7月29日,doi:10.37421/2157-7099.2024.15.755
二维半金属在磁性纳米器件中展现出巨大的潜力。然而,二维半金属的发现仍然基于逐案评估。本文,我们提出了设计具有大自旋间隙的二维过渡金属基半金属的一般规则,即找到具有洪特规则分裂的 d 轨道和深阴离子 p 轨道能级以使 dp 相互作用最小化的材料。基于对具有扭曲四面体晶场的 54 种过渡金属化合物 MX 2(M = 3 d 区过渡金属;X = VIA-VIIA 元素)的 DFT 计算,我们发现所有铁磁化合物都表现出半金属性。我们将半金属性归因于具有弱 dp 轨道杂化的 M 阳离子的部分填充 d 轨道的洪特规则分裂。由于 Cl p 轨道能级较深(− 8.4 eV),氯化物表现出大于 4 eV 的自旋间隙。我们在过渡金属三氯化物 M Cl 3(M = 3 d 区过渡金属)中验证了这一规则。利用这一规则,我们预测铁磁单层 M Cl 和 M 3 Cl 8(M = 3 d 区过渡金属)是具有大带隙的半金属。这项工作丰富了二维半金属的种类,并可能带来新型磁性纳米器件。
抽象的人群物种,尤其是trichocarpa,长期以来一直是基因组研究的模型树,这是由于完全测序的基因组。然而,高杂合性和重复区域的存在,包括丝粒和核糖体RNA基因簇,剩下了59个未解决的间隙,占三分法P. trichocarpa基因组的3.32%。在这项研究中,改进了愈伤组织诱导方法,以从P. ussuriensis花药中得出双倍的单倍体(DH)愈伤组织。利用长阅读测序,我们成功地组装了一个几乎没有间隙的,端粒到telomere(T2T)P。ussuriensis基因组,跨越了412.13 MB。该基因组组件仅包含7个间隙,其重叠n50长度为19.50 MB。注释显示该基因组中有34,953个蛋白质编码基因,比trichocarpa多465个。值得注意的是,中心区域的特征是高阶重复序列,我们在所有DH基因组染色体中鉴定了和注释的中心粒区域,这是杨树的第一个。衍生的DH基因组表现出与毛thocarpa的高共线性,并显着填补了后者基因组中存在的空白。此T2T P. ussuriensis参考基因组不仅会增强我们对基因组结构的理解,并在杨树属内的功能增强了我们的功能,而且还为杨树基因组和进化研究提供了宝贵的资源。
动机:成对序列比对仍然是计算生物学和生物启发性的基本问题。基因组学和测序技术的最新进展要求更快,可扩展的算法可以应对不断增加的序列长度。基于动态程序的经典成对比对算法受到时间和记忆的二次需求的强烈限制。最近提出的波前比对算法(WFA)引入了一种有效的算法,以在OðNS的时间内执行精确的差距 - 额度对齐,其中s是最佳分数,n是序列长度。尽管有这些界限,但WFA的OðS2Þ对于基因组尺度比对在计算上是不切实际的,导致需要进一步改进。结果:在本文中,我们介绍了双向WFA算法,即能够计算Oðsmemory中最佳比对的第一个GAP-AFFINE算法,同时保留WFA的时间复杂性OðNSS。结果,这项工作改善了最低的已知内存结合OðnÞ以计算间隙 - 额定对准。实际上,我们的实施不需要超过几百MB的嘈杂的牛津纳米孔技术来读取多达1 MBP,同时保持有竞争力的执行时间。可用性和实施:所有代码均可在https://github.com/smarco/biwfa-paper上公开获取。联系人:santiagomsola@gmail.com补充信息:补充数据可从BioInformatics Online获得。