抽象的高折射率介电介电纳米antennas通过辐射通道的设计通过purcell效应强烈修改衰减速率。由于其介电性质,该领域主要是在纳米结构内和间隙内进行的,这很难使用扫描探针技术进行探测。在这里,我们使用单分子荧光寿命成像显微镜(SMFLIM)来绘制介质间隙纳米二二聚体的衰减速率增强,中位定位精度为14 nm。,我们在纳米坦纳(Nanoantenna)的间隙中测量的衰减速率几乎是玻璃基板上的30倍。通过将实验结果与数值模拟进行比较,我们表明,与等离激元纳米ant的情况相反,这种较大的增强本质上是辐射的,因此在量子光学和生物效率等应用中具有巨大的潜力。
单侧固定间隙保持器是无功能装置,用于第一或第二乳磨牙过早脱落。其中包括宽带间隙保持器,它由金属带和不锈钢丝环(0.036)组成,易于制作且价格低廉,但它不能防止对颌牙的萌出,并且可能会残留生物膜 [14,17]。同样,冠环间隙保持器,带有镀铬钢冠和钢丝环,可防止磨牙向近中移位,但不能恢复咀嚼功能,如果发生断裂,则需要更换整个装置 [16,17]。另一方面,远端滑动间隙保持器,带有镀铬钢带或冠和钢丝,可引导第一恒磨牙的萌出,避免其向近中移位,但其放置需要复杂的技术,并且可能会积聚牙菌斑 [17,19]。还有直接粘合间隙保持器,它使用弯曲的不锈钢丝(0.028)并
糖尿病是全球最常见的代谢疾病之一,导致并发症,死亡率和显着的医疗保健支出,在全球范围内造成了实质性的社会和财务负担。糖尿病环境会引起代谢变化,对肌腱稳态产生负面影响,从而导致生物力学特性和组织病理学的改变。众多研究研究了糖尿病对肌腱发挥病理影响的机制,包括增加自由基生产,氧化应激,炎症反应,高级糖基化终产物(AGES)的沉积和微血管变化。这些代谢变化损害肌腱结构,生物力学和肌腱修复过程。肌腱干细胞的增殖降低,凋亡增加和异常分化,以及肌细胞的异常表达,最终导致不足的肌腱修复,纤维化和重塑。尽管研究揭示了糖尿病对肌腱病,纤维化或染色以及肌腱损伤愈合的影响,但仍缺乏系统的理解。因此,本综述总结了当前的研究状态,并提供了全面的概述,为未来的糖尿病对肌腱影响的影响和与糖尿病相关肌腱疾病的治疗的发展提供了理论指南。
为了实现大规模集成,在半导体衬底上制造的集成电路需要多层金属互连,以将半导体芯片上的半导体器件的离散层电连接起来。不同层级的互连由各种绝缘层或介电层隔开,这些绝缘层或介电层通过蚀刻孔将一层金属连接到下一层金属。随着特征尺寸的缩小和芯片上晶体管密度的进一步增加,后端铝互连的电阻和寄生电容已成为限制高性能集成电路 (IC) 电路速度的主要因素。1-2) 通过减小绝缘层的厚度,金属线之间的层内和层间电容会增加,因为电容与线之间的间距成反比。随着电容的增加,电阻-电容 (RC) 时间延迟会增加。增加 RC 时间延迟会降低电路的频率响应并增加信号通过电路的传播时间,从而对
淬火和退火是量子系统时间演化中的两个极端:退火探索具有缓慢变化参数的汉密尔顿量的平衡相,可用作解决复杂优化问题的工具。相反,淬火是汉密尔顿量的突然变化,产生非平衡情况。在这里,我们研究了这两种情况之间的关系。具体而言,我们表明,退火间隙的最小值(量子退火算法的一个重要瓶颈)可以从描述淬火后动态量子态的动态淬火参数中揭示出来。结合包括神经网络训练在内的统计工具,可以利用淬火和退火动力学之间的关系,从淬火数据中重现退火间隙的完整功能行为。我们表明,通过这种方式获得的有关退火间隙的部分或全部知识可用于设计具有实际解决时间优势的优化量子退火协议。我们的结果是通过模拟随机 Ising Hamiltonian 获得的,代表了精确覆盖问题的难以解决的实例。
石墨烯,排列在平坦的蜂窝晶状体中的碳原子具有许多有趣的电子特性[1,9]。在实现实验室中大型石墨烯晶体的实现后[10]的兴趣,理论和实验性是强烈的。主要特征之一是物理学家所说的电子在石墨烯中的“相对论行为”,石墨烯中的电子可以看作是生活在2 d空间中的无质量费米子,其动力学由weyl hamiltonian产生,即零毛汉氏菌,零含量为零。我们在这里提出了石墨烯的标准分析,该标准分析显示了Weyl纤维,这是对石墨烯的离散处理,可追溯到[13](即使不是更早)。我们已经有一段时间对经受垂直均匀磁场的石墨烯片的电子特性感兴趣。我们通过将哈密顿的积分内核乘以单型相因子来对这种情况进行建模,该技术被称为“ PEIERLS替代” [6,7,11]。
在绝热量子计算中,找到汉密尔顿量间隙随绝热扫描过程中变化的参数的依赖关系对于优化计算速度至关重要。受这一挑战的启发,在本文中,我们探索了深度学习的潜力,即应用不同的网络架构发现从完全识别问题汉密尔顿量的参数到前面提到的间隙参数依赖性的映射。通过这个例子,我们推测这类问题可学习性的一个限制因素是输入的大小,也就是说,识别汉密尔顿量所需的参数数量如何随系统大小而变化。我们表明,当参数空间随系统大小线性扩展时,长短期记忆网络能够成功预测间隙。值得注意的是,我们表明,一旦将这种架构与卷积神经网络相结合来处理模型的空间结构,甚至可以预测比神经网络在训练期间看到的系统尺寸更大的系统尺寸的间隙演变。与现有的计算间隙的精确和近似算法相比,这提供了显著的速度提升。
引言:规范/引力对偶背景下的一个核心问题是理解体经典几何是如何编码在边界态的纠缠结构中的,人们希望通过研究冯·诺依曼熵在这种环境下特有的性质来提取有关这种编码的有用信息。互信息一夫一妻制 (MMI) 的发现 [4,5] 表明,对于几何状态,即与经典几何对偶的全息共形场论 (CFT) 的状态,Hubeny-Rangamani-Ryu-Takayanagi 处方 [6,7] 意味着边界 CFT 中空间子系统的熵满足一般不适用于任意量子系统的约束。此后,人们发现了新的全息熵不等式,全息熵锥 (HEC) [8] 得到了广泛的研究 [9 – 20] 。随着参与方数量 N 的增加,寻找新的不等式很快变得在计算上不可行
乙二醇是汽车防冻剂和各种家庭和工业产品中的共同组成部分,无论是意外还是故意的,都会在摄入时构成重大健康风险。以严重的代谢性酸中毒,草酸钙晶体的形成和各种末端器官损伤,乙烯乙二醇毒性的特征是致命的,其潜在致命剂量估计为1500 mg/kg。母体化合物具有渗透活性,导致有害代谢物的产生,例如乙酸和草酸,这有助于代谢性酸中毒,肾毒性和心脏毒性。急性管理策略涉及支持性护理,将fomepizole作为竞争性酶抑制剂的管理以及通过透析消除肾脏。此外,乳酸间隙是乙二醇中毒中重要的诊断工具,突出了测量和预期乳酸水平之间的差异,这可能表明代谢性酸中毒和组织灌注不足。,我们提出了一例乙二醇中毒的病例,尽管启动治疗以及可能使用乳酸间隙来预测严重程度,但心脏骤停复杂。
量子自旋霍尔绝缘体的特征在于二维 (2D) 内部的带隙和螺旋状一维边缘态 1 – 3。在螺旋边缘态中诱导超导可产生一维拓扑超导体,拓扑超导体是许多拓扑量子计算提案的核心,是一种备受追捧的物质状态 4。在本研究中,我们通过将单层 1T ′ -WTe 2(量子自旋霍尔绝缘体 1 – 3)放置在范德华超导体 NbSe 2 上,报告了范德华异质结构中超导性和量子自旋霍尔边缘态的共存。使用扫描隧道显微镜和光谱 (STM/STS),我们证明 WTe 2 单层由于底层超导体而表现出邻近诱导的超导间隙,并且量子自旋霍尔边缘态的光谱特征保持不变。综上所述,这些观察为 WTe 2 中量子自旋霍尔边缘态的邻近诱导超导提供了确凿证据,这是在这种范德华材料平台上实现一维拓扑超导和马约拉纳束缚态的关键一步。当代人们对拓扑超导体的兴趣是由其无间隙边界激发的潜在应用驱动的,这些激发被认为是具有非阿贝尔统计特性的突发马约拉纳准粒子 5 – 8 。实现拓扑超导的一条途径是实现本征无自旋 p 波超导体 9 。一个强有力的替代方法是使用传统的 s 波超导体通过超导邻近效应在拓扑非平凡状态下诱导库珀配对,从而产生有效的 p 波配对 10 。这种方法最近已被用于在超导衬底上生长的外延三维拓扑绝缘体膜中设计二维(2D)拓扑超导11,12,和通过在埋置外延半导体量子阱中接近二维量子自旋霍尔系统设计一维拓扑超导13,14。虽然这些演示标志着重要的里程碑,但在范德华材料平台上探索拓扑超导具有明显的优势。使用分层二维材料可以使二维量子自旋霍尔边缘在垂直异质结构中接近,从而绕过横向接近效应几何的长度限制。此外,表面和边缘易于进行表面探针探测,从而可以检测和基础研究一维拓扑超导态的特征。本征量子自旋霍尔态已在 1T ′ -WTe 2 单层中得到实验证明(参考文献 1 - 3、15 - 17),这与早期的理论预测 18 一致。