并倾向于在特定电解质溶液或其他环境中独立腐蚀。这种溶解或腐蚀趋势与金属在导电介质中的电位有关。电化学腐蚀本质上受组成电化学对的金属在电化学序列中的相对位置的影响。序列中位置接近的金属将具有更接近的电位,而位置差异越大,电位差就越大。使用表 I 作为确定不同金属组合的相对兼容性的指南。海水中金属的电化学序列如表 II 所示。兼容性并不表示完全没有电化学作用。电化学效应,即阳极的腐蚀程度,受金属在电化学序列中的差异、动力学因素(例如极化效应)、电解环境和金属的物理排列的影响。有关更多信息,请参阅附录 B。 4. 一般要求(不适用) 5. 详细要求
图2。生物启发的Zn@C电极的制造以及腐蚀和氢的耐药性评估。(a)生物启发的Zn@C电极的SEM图像后24 h聚合和热解后,(b)生物启发的SEI层的横截面视图。(c)TEM图像和碳球涂层的相应元素映射。(d)在2 m ZnSO 4中裸露锌电极的腐蚀表面的SEM图像7天,(e)生物启发的Zn@C电极的腐蚀表面,(F)xrd xrd表征在裸露的Zn电极的腐蚀表面上,并在50个cycles the cycm cycm -2 cer in 1 ma cm -2之后,(g)cy cy cy cy in Zn电极和Zn@C电极基于两个电极细胞,(H)裸Zn和生物启发的Zn@C阳极的接触角。碳球的沉积可以限制在选定区域,例如在
新能源的高使用率推动了下一代储能系统 (ESS) 的发展。钠离子电池 (SIB) 作为锂离子电池 (LIB) 的有希望的替代品,由于地壳中天然 Na 的丰度高达 2.4 wt.%(而 Li 为 0.0017 wt.%)且成本低廉,引起了广泛的研究兴趣。随着 SIBs 技术可行性的增加,高性能电极材料的开发一直具有挑战性。在过去的几年中,具有高理论容量和出色的氧化还原可逆性的双金属硫化物 (BMS) 作为 SIBs 的高性能阳极材料显示出巨大的潜力。本文报道了 BMS 作为 SIBs 阳极的最新进展,并系统地研究了这些电极的电化学机理。此外,还强调了当前的问题、挑战和观点,以解决对相关电化学过程的广泛理解,旨在为 SIB 阳极材料的可能方向提供深刻的展望。
我们一直在与电池材料公司进行对话。这些主题和关键问题将充当这项研究的关键内容。它们包括:•区域电池阳极能力•补贴要求,使电池制造具有成本效益•电池阳极需求;这对石油焦炭供应的影响•未来制造设施的预测,概率和地理•投资成本和投资者愿意投资的意愿?•政府对电池材料的政策•需要电池阳极的人;以多少数量和质量•电池阳极的客户•电池阳极制造的环境规则和规定•电池阳极市场的尺寸(天然和合成石墨)•电池阳极生产商配置文件•电池阳极制造的完整生命周期的碳足迹•能源部(DOE)(DOE)未来对电池的资金和EVS•EVS•EVS•EVS•EVS•EVS•EVS•net Zero Funding Initiative
电池技术的开发已经快速进步,并且已经针对多种类型的应用使用了电池:从小型便携式设备(例如装有最大300克电池的手机和笔记本电脑)到电动汽车和持有数百千克电池的重型应用。由于能量过渡而对电池的需求需要大量材料;但是,欧盟没有足够的矿山来满足这一需求。因此,已经宣布了许多用于从欧洲城市矿山收回此类关键材料的倡议。欧洲电池法规已经设定了电池中包含的某些元素的最低回收水平,例如钴(85%),铅(6%),锂(6%)和镍(6%)(6%),从制造和消费者废物中重复使用新电池。荷兰和荷兰公司也已经解决了紧迫性:电池价值链的需求以保护荷兰所需的电池材料和组件。在这方面,预计到2050年,荷兰经济将完全循环,并在2030年减少一半的原材料。这些目标与2030年的可持续发展目标和巴黎协定保持一致。实现固体电池价值链的第一步之一是对电池技术以及回收技术进行技术评估。在过去的几十年中,已经开发了多种阴极活性材料,主要集中在使用锂,钴,镍和锰。本报告概述了电池技术,现在和将来都针对阴极有效材料进行了特定的关注,并探讨了不同电池化学物质对材料回收的影响。阴极活性材料组成的变化通常是由四个重要因素驱动的:由于钴地雷中钴的成本高以及劳动条件差,钴的浓度已降低。然后,为了提高电池的性能,镍的浓度已经增加。最后,将铁磷酸锂用作阴极的活性材料的使用显着降低了电池的价格,使其对例如重型申请。电池是包含各种材料的复杂产品。但是,根据电池构造的复杂性,可以手动拆除许多组件,外壳和电子设备以进行高质量的回收利用。其他组件,例如细胞外壳,当前的收集器和活性材料,无法拆除,而是粉红色并以这种方式混合在一起。大多数回收技术采用了预处理步骤,包括几个分离步骤,从细胞放电开始,高压灭菌/切碎和进一步的分离步骤开始,并在基水透明处理途径之前,产生了中间产品,黑色质量。黑色质量大多包含来自阴极和阳极的活性材料,其中约占电池总重量的25%,但也占当前收集器和分离器的小颗粒。后者约占总电池重量的40%,但在预处理过程中大部分与黑色质量分数分开。未来的电池技术将使单程合适的设计变得复杂:新的电池技术使用其他元素,在LTO和NTO阳极的情况下,用于Si-C阳极的钛和硅,或包含更复杂的结构,如Quasi固态炮台而言。在短期内,这些电池技术尚未回收,因为它们尚未以工业规模生产。在这样的电池以这种规模生产并延伸到寿命的时间时,对传记进行分类变得很重要。因此,第一个重要的寿命流将主要包含具有NMC,NCA和LFP化学性质的电池。电池回收技术(黑色质量)的中间产品的组成强烈依赖于预处理过程中粉刷的电池化学反应。将喂入预处理过程的电池化学组合在
锌金属在电化学领域的应用一直具有特定的兴趣,因为它是高能密度电池和牺牲电极的偏爱材料,可保护其他金属组件免受腐蚀。除了高能量密度以外,其他一些因素(例如其低成本,易于处理,无毒性和锌的丰度)使这种金属受到了研究人员的极大关注。在过去的几十年中,已经致力于发现和新兴的电力可充电基于锌的电池,以回应在电子设备快速增长的电子设备和汽车业务中日益增长的能源消耗要求。然而,无论材料科学和细胞设计中的发展如何,都在开发能够替代其他可行的可充电电池的系统中获得了略有突破。钝化是用于商业化的锌空气电池(ZAB)中最具挑战性的障碍之一。最近,已经执行了一些发展,以减轻Zabs中锌阳极的钝化。本综述对该问题的各个方面进行了仔细的调查,以及缓解锌阳极腐蚀和钝化的最新发展。
在过去的二十年中,锂离子电池已发展成为最主要的电化学储能系统,锂离子电池材料和系统工程也取得了重大进展 [1-3]。传统锂离子电池 (LIB) 的一个重大限制是出于安全考虑无法使用元素锂作为阳极材料。在反复充电的过程中,锂不会均匀沉积;相反,它倾向于形成树枝状结构。这些枝晶会向阴极延伸,导致短路并可能导致电池爆炸 [4]。近年来,镁离子电池(后锂电池)备受关注,被认为是锂基技术的有前途的替代品,尤其是在电动汽车应用领域 [5-6]。与受地质储量有限的锂不同,镁在地壳中的含量要丰富得多,约占 1.5 wt%。镁离子电池比锂离子电池具有多项优势,例如,其理论体积能量密度高达 3833 mAh/mL,而锂金属阳极的理论体积能量密度仅为 2046 mAh/mL。此外,镁离子系统具有较高的重量容量,为 2205 mAh/g,并且
项目申请人获得了 STE 奖项,用于升级其位于圣克拉拉县的现有试点生产设施,该设施将开发和制造用于电动汽车电池的先进锂阳极。据申请人称,目前为电动汽车生产的大多数阳极都是由石墨和锂金属氧化物制成的,每次充电只能为电动汽车提供约 250 英里的平均行驶里程。据申请人称,该公司已经开发了一种新的卷对卷(“R2R”)锂沉积系统,用于生产预锂化的 Si/SiOX-石墨阳极和 Cu(铜)阳极上的锂。这种对阳极的改进有望降低电池成本,将能量密度提高 20%,并将充电时间缩短至 15 分钟以下。申请人表示,它计划建造或扩建其设施,以支持其 R2R 和大型沉积设备、计量系统和试点生产的研究和设计,从而在未来实现其阳极和能源产品的全面商业化生产。
摘要:过渡金属氧化物(TMOS)是可安全和快速充电的电池的有前途的阳极材料,但是它们的高工作电势限制了能量密度。在这里,我们制定了一种抑制无序岩盐(DRS)Li 3 V 2 O 5(LVO)阳极的工作潜力的策略,通过MG掺杂量约为10%至0.54 V。密度功能理论(DFT)计算将这种电压降低归因于li离子的位置能量增加,因为Mg掺杂,对LI迁移障碍的影响很小。mg-掺杂的LVO在1000个周期以上的95%以上,速率为5C。全细胞具有0.8 CO 0.8 CO 0.1 Mn 0.1 Mn 0.1 O 2阴极的预期,预期的能量密度和能量密度的增加,同时保留了5C的250个周期的能力的91%,以表明我们的发现在5C中显示出良好的良好的良好态度,该良好的良好的良好态度的良好的良好态度是良好的途径。增强的能量密度。l
先前的研究表明,锂离子电池中容量褪色的主要原因是石墨电极处发生缓慢的侧面反应,这不可逆地消耗了锂库存。18-24这些副反应是由于石墨SEI的稳定性有限或保护效率而发生的;因此,对石墨SEI的研究是电池研究中最重要的领域之一。25 - 29同样,对锂金属阳极上SEI形成的研究对于高能锂金属阳极电池的发展至关重要,以及改善对锂镀层反应的理解,这些反应严重限制了石墨基锂离子电池的寿命。30-33然而,当前对这些复杂反应的理解受到限制,对于石墨和金属阳极的SEI反应机理和气体形成特性的差异知之甚少。在这项工作中,我们结合了操作数压力测量和在线电化学质谱法,以研究在含有石墨和金属电极的电池中进化和消耗的气体。通过比较锂半细胞中石墨的气体形成特性,在具有LifePo 4计数器电极的细胞中,我们证明了锂