电池技术的开发已经快速进步,并且已经针对多种类型的应用使用了电池:从小型便携式设备(例如装有最大300克电池的手机和笔记本电脑)到电动汽车和持有数百千克电池的重型应用。由于能量过渡而对电池的需求需要大量材料;但是,欧盟没有足够的矿山来满足这一需求。因此,已经宣布了许多用于从欧洲城市矿山收回此类关键材料的倡议。欧洲电池法规已经设定了电池中包含的某些元素的最低回收水平,例如钴(85%),铅(6%),锂(6%)和镍(6%)(6%),从制造和消费者废物中重复使用新电池。荷兰和荷兰公司也已经解决了紧迫性:电池价值链的需求以保护荷兰所需的电池材料和组件。在这方面,预计到2050年,荷兰经济将完全循环,并在2030年减少一半的原材料。这些目标与2030年的可持续发展目标和巴黎协定保持一致。实现固体电池价值链的第一步之一是对电池技术以及回收技术进行技术评估。在过去的几十年中,已经开发了多种阴极活性材料,主要集中在使用锂,钴,镍和锰。本报告概述了电池技术,现在和将来都针对阴极有效材料进行了特定的关注,并探讨了不同电池化学物质对材料回收的影响。阴极活性材料组成的变化通常是由四个重要因素驱动的:由于钴地雷中钴的成本高以及劳动条件差,钴的浓度已降低。然后,为了提高电池的性能,镍的浓度已经增加。最后,将铁磷酸锂用作阴极的活性材料的使用显着降低了电池的价格,使其对例如重型申请。电池是包含各种材料的复杂产品。但是,根据电池构造的复杂性,可以手动拆除许多组件,外壳和电子设备以进行高质量的回收利用。其他组件,例如细胞外壳,当前的收集器和活性材料,无法拆除,而是粉红色并以这种方式混合在一起。大多数回收技术采用了预处理步骤,包括几个分离步骤,从细胞放电开始,高压灭菌/切碎和进一步的分离步骤开始,并在基水透明处理途径之前,产生了中间产品,黑色质量。黑色质量大多包含来自阴极和阳极的活性材料,其中约占电池总重量的25%,但也占当前收集器和分离器的小颗粒。后者约占总电池重量的40%,但在预处理过程中大部分与黑色质量分数分开。未来的电池技术将使单程合适的设计变得复杂:新的电池技术使用其他元素,在LTO和NTO阳极的情况下,用于Si-C阳极的钛和硅,或包含更复杂的结构,如Quasi固态炮台而言。在短期内,这些电池技术尚未回收,因为它们尚未以工业规模生产。在这样的电池以这种规模生产并延伸到寿命的时间时,对传记进行分类变得很重要。因此,第一个重要的寿命流将主要包含具有NMC,NCA和LFP化学性质的电池。电池回收技术(黑色质量)的中间产品的组成强烈依赖于预处理过程中粉刷的电池化学反应。将喂入预处理过程的电池化学组合在
主要关键词