摘要。储能技术成为支持电气化议程的关键方面。在过去十年中,可再生能源和电动汽车的兴起趋势会产生意外的电池技术需求。锂离子电池(LIB)已被吹捧为一种有关储能开发的革命性技术。除了LIB由于其有前途的性能,LIB还是对电子应用的表现非常出色,它在质量生产的可伸缩性方面也广为人知。尽管预测LIB仍将在未来十年内主导市场,但是电池千千快事的增长仍然很慢。生产过程的难度和所使用的机器数量成为支持行业规模端到端电池生产的主要不情愿因素。因为电池生产链缺乏精确的计算可能会影响业务的可持续性。因此,有必要调查从实验室分为行业规模的扩大电池阴极生产。该研究的对象研究是印尼领先的电池研究所,国家电池研究所。通过考虑原材料,机械,功耗和人力等成本结构因子(例如成本结构因子),将计算集中在NMC 811阴极活动材料上。该结果成功估计了每批NMC 811阴极100公斤生产的总成本,或一年中的36吨。注意,本手稿中讨论的原材料成本有限的数据,而机械,功耗和人力方面将在另一篇文章中分别讨论。
图8。PENOM PROTEMLEMETRIC软件的用户界面,显示了单晶NCM样品的分析。a)此项目中使用的所有图像的列表。b)确定的,有色颗粒。c)已确定的粒子列表。d)计算出所有颗粒的统计数据。e)自定义的用户定义图可用于可视化数据。
摘要这项工作回顾了可用于合成和修饰锂离子电池中阴极活动材料(CAM)颗粒的不同技术。根据所涉及的过程和产品颗粒结构分析合成技术。确定了过程粒子结构关系中的知识差距。许多这些过程都用于其他类似行业;因此,可以将平行的见解和知识转移应用于电池材料。在这里,我们讨论了电池文献之外不同机械模型的应用示例,并确定了CAM合成的相似潜在应用。我们建议,这种机械模型的广泛实施将增加对过程粒子结构关系的理解。这种理解将更好地控制CAM合成技术,并开放门,以确切地定制有利于增强电化学性能的产品颗粒形态。
维罗妮卡·波萨-诺盖拉斯、艾丽西亚·戈米斯-贝伦格尔、玛尔塔·帕佐斯、玛丽亚·安吉利斯·桑罗曼、康奇·玛丽亚·康塞普西翁·奥文·阿尼亚。探索利用碳材料作为阴极在电化学高级氧化过程中降解抗生素。环境化学工程杂志,2022,10 (3),第 107506 页。 “10.1016/j.jece.2022.107506”。 �hal-03827350�
报道了包括 P2-Na 7/9 [Cu 2/9 Fe 1/9 Mn 2/3 ]O 2 4 、O3-Na 0.9 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 5 、
迫切需要高性能可充电电池来满足电网规模固定式储能的需求。高温电池系统,例如 Na-S 电池、Na-NiCl2 电池(ZEBRA 电池)和液态金属电极 (LME) 电池,表现出高功率密度和高循环稳定性等优点,但也受到高工作温度的影响。我们最近发明了熔融锂金属电池的新概念,它由液态锂阳极、合金(Sn、Bi、Pb)液态阴极和锂离子导体作为固体电解质组成。这里我们展示了一种在相对较低的 210 C 温度下工作的熔融金属氯化物电池。该电池设计包括熔融(AlCl3-LiCl)阴极、固体电解质(石榴石型 Li6.4La3Ta0.6Zr1.4O12(LLZTO)陶瓷管)和熔融锂阳极。组装的 AlCl3-LiCl||LLZTO||Li 全电池的平均放电电压为 1.55 V,能量效率为 83%,已成功循环 100 次(800 小时),容量没有衰减。电池的理论比能为 350 Wh/kg,根据电极材料的重量估计成本为 11.6 美元/千瓦时。考虑到高性能、高安全性、低工作温度和原材料成本低,我们的新型熔融电极电池系统为固定式储能开辟了新的机会。
最近,富含Ni的过渡金属氧化物(Lini X Mn Y Co Z O 2 Ni-Rich NMC,X $ 0.7)已获得对锂离子电池(LIB)的兴趣,主要是由于它们的高特征率较高的c速率(最高220 mA H G-G-g-1)和较低的成本。1,2 LINI 0.8 CO 0.1 Mn 0.1 O 2(NMC811)和其他富含Ni的层次氧化物的发展使它们可以在电动汽车Libs中用作阴极材料。3传统上,NMC811电极是使用N-甲基-2-吡咯烷酮(NMP)溶剂产生的,该溶剂既有毒又昂贵。4为了追求NMC811电极的更可持续和绿色的生产,已经研究了水基加工。但是,这带来了挑战。5 - 7例如,在水加工过程中,可以去除颗粒表面上的碳酸锂残留物。8然而,据报道,富含Ni的NMC材料可以与水反应
在大部分多晶样品中对局部应变的成像需要对纳米镜面水平的晶体结构变形具有高渗透深度和敏感性的探针。随着同步器仪器的重大进展,这是可能的,特别是在过去二十年中开发的一致散射方法。Bragg相干衍射成像(CDI)(Robinson等人,2001年; Miao等。,2002年; Pfeifer等。,2006年; Robinson&Harder,2009年)现在被确定为成像单个纳米晶体中的结构变形和结构缺陷的强大工具(Ulvestad等人。,2015年; Kim等。,2021)。由于晶体通常是多种多样的,因此测量不同位置的几个颗粒以收集样品中足够的统计信息(Singer等人。,2018年)。在此类实验中通常未知测量颗粒的精确位置,因此通常假定样品的均匀性。对于材料响应不统一的系统,获取位置信息很重要。例如,在带有厚度阴极的锂离子电池中,预计充电行为将取决于阴极表面下的深度(Zheng等人。,2012年; Lee等。,2018年)。增强Operando Bragg CDI的能力,并可以绘制测得的颗粒的可能性将在单个纳米颗粒的性能与超厚电极的3D结构之间提供缺失的联系。,2012年),作为解决此问题的一般解决方案,在这里,我们建议一种确定Bragg CDI实验中测得颗粒的3D位置的方法。我们的方法与涉及从微观摄影中跨相关性检测旋转中心检测的程序有一些相似之处(Pan等
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
该电池系统中的石墨电极在66 mA g -1的电流密度下显示出70 mA H G -1的可逆特异性c。7随后,带有离子液体电解质的铝离子电池已受到广泛关注。为了增强该系统中铝离子电池的能量密度,研究人员主要致力于搜索具有高压平台,高可逆能力和良好循环稳定性的阴极材料。近年来,包括金属suldes在内的各种材料(MOS 2,8 CO 3 S 4(参考9),金属氧化物(Co 3 O 4,10 SNO 2,11 Tio 2(参考12),金属磷酸盐和磷酸盐(Cu 3 P,13 Co 3 PO 4(参考14),导电聚合物(PANI),15个碳材料(碳纸),16个和基于石墨的材料17,18已被广泛研究为用于铝离子电池的阴极材料。在这些材料中,基于石墨的材料已被广泛研究,因为它们的最高电压高原在2 V vs. Al/Al 3+和稳定的循环性能。但是,石墨的相对较低的特定能力限制了其商业应用。为了提高石墨的特定能力,研究人员主要集中于建造具有高表面积的特殊形态,并引入了多个缺陷和纳米级空隙。例如,Zhang等人。合成的聚噻吩/石墨复合材料,其具有较大表面的层状结构可容纳氯铝酸酯(ALCL 4-)。19在1000 mA g -1的电流密度下,其特征容量达到113 mA h g -1。另外,Lee等人。制备的酸处理的膨胀石墨(AEG)和碱蚀刻石墨(beg),它们具有涡轮结构和无序结构,